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Abstract— Manual and automated segmentation of individual
muscles in magnetic resonance images have been recognized as
challenging given the high variability of shapes between muscles
and subjects and the discontinuity or lack of visible boundaries
between muscles. In the present study, we proposed an original
algorithm allowing a semi-automatic transversal propagation
of manually-drawn masks. Our strategy was based on several
ascending and descending non-linear registration approaches
which is similar to the estimation of a Lagrangian trajectory
applied to manual masks. Using several manually-segmented
slices, we have evaluated our algorithm on the four muscles of
the quadriceps femoris group. We mainly showed that our 3D
propagated segmentation was very accurate with an averaged
Dice similarity coefficient value higher than 0.91 for the minimal
manual input of only two manually-segmented slices.

I. INTRODUCTION

Quantification of individual muscle volume is of high
interest in the field of neuromuscular disorders for which
muscle disease is associated with a loss of muscle tissue
and a replacement by fat and in sport in which it is of
interest to follow muscle volume changes resulting from
repeated training sessions. The corresponding segmentation
of muscle(s) in MR images has been recognized as
challenging given the high variability of shapes and relative
positions between muscles and among individuals. Also, the
hardly discernible texture differences between individual
muscles and the potential fatty infiltration of muscles in
patients with neuromuscular disorders represent additional
challenging factors. Besides these anatomical differences,
subtle changes regarding the angular and relative position
of individual muscles in MR images can generate other
uncontrolled variability factors. So far, manual segmentation
of anatomical structures has been used in multiple studies,
and this approach has been widely acknowledged as time-
consuming and operator-dependent [1].

More recently, several semi-automated / automated meth-
ods have been assayed on MR images. A random walk
algorithm based on graphs has been reported by Baudin
et al. [2] while Gilles et al. [3] proposed a method based
on mesh deformable registration models. In order to take
into account the large interindividual variability, Prescott et
al. [4] used a semi-automatic segmentation method based
on the preselection of appropriate templates selected from a
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database. On the basis of a combination of manual segmen-
tation atlas-based registration, Ahmad et al. [5] proposed a
semi-automatic segmentation tool for quadriceps muscles.

Overall, although of interest, these multi-atlas based meth-
ods have been mainly used for measurements of large muscle
volumes. Sdika et al. [6] recently demonstrated the reliability
of a multi-atlas segmentation approach for the automatic
segmentation and volume quantification of individual leg
muscles in rat. Le Troter et al. [7] evaluated the potential of
this approach for quantification of individual muscle volume
and reported the corresponding utilization for longitudinal
studies in human. They illustrated that a fully-automated
method was appropriate for large muscle groups but not for
individual muscles and proposed a single-atlas based method
as an alternative solution.

The purpose of the present study was to propose and
characterize a new approach of semi-automated segmentation
of individual muscles using a combination of 3D propagation
and 2D registration of masks related to regions of interest.

II. SEGMENTATION PROPAGATION

Our method is semi-automatic since it requires manual
segmentation of, at least, the two slices (2D) located on the
inferior and superior bounds of the region of interest (3D).

A. Non-linear registration approaches

We used the a priori knowledge considering muscles as
cylinders which can be nonlinearly distorded. We initially
considered two naive methods with the aim of extrapolating
the manual anatomical input in a few slices to the overall
dataset within the region of interest. The first and second
approaches considered an interpolation and a propagation
method respectively. We also tested a third method corre-
sponding to a mixture of the first two.

For the interpolation approach, we initially estimated the
registration between the inferior and superior manual seg-
mentations (i.e. masks) of the region of interest. Then we
applied a linear interpolation between the resulting transfor-
mation and the identity in order to generate an automatic
segmentation of the intermediate slices.

The propagation approach was iterative and consisted in
two steps. Initially, successive registrations of each grey level
of a given slice (considered as the source image) to the fol-
lowing slice (considered as the target image) were performed.
The resulting transformations were then combined and used
to generate the mask of each slice from one of the slice
manually segmented.
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Fig. 1. Schematic representation of all transformations resulting from
registration processes. Mi represent the manual masks and Ii the grey level
MRI slices.

Given the similarities between our both approaches and
the usual mathematical representations of flow in fluid me-
chanics [8], we chose to respectively define the interpolation
approach as Lagrangian and the propagation approach as
Eulerian, both terms used in the context of fluid registration
[9], [10].

For both Lagrangian and Eulerian approaches, we tested
ascending and descending versions (respectively denoted
La, Ld , Vi, Wi, and illustrated in Fig.1). All registrations
were estimated with the ANTs library through the command
antsRegistration using the SyN transformation model [11].
For the Lagrangian approach, a cross-correlation metric was
used for each label of the manual masks. One single cross-
correlation metric between source and target grey level
images was used for the Eulerian approach.

The Lagrangian approach did not take into account lo-
cal anatomical deformations between the two manually
segmented slices and considered anatomical variations as
rather linear in the direction of propagation. The Eulerian
approaches did follow anatomical variations but rapidly di-
verged given that errors were accumulating with the number
of iterations and the accuracy decreased with respect to the
distance from the starting slice. In contrast, the Lagrangian
approaches did not follow the anatomy and was stable as it
was driven by the segmentation of the final slice.

B. Our transformation merging method

Considering the properties of the four native approaches
La,Ld ,Vi,Wi, we chose to merge the resulting fields in order
to keep the positive contributions only and implement a
an original approach combining the straight attachment to
the anatomical information of the Eulerian propagation and
the convergence of the Lagrangian approach towards the
target slice. The fusion of the fields resulting from the native
approaches was obtained from the solution of the following
optimization problem:

argmin(αi‖Bi− vi ◦Bi−1‖2 +βi‖Bi−Wi ◦La‖2) (1)

where i is the index of the current slice to obtain, Bi the
resulting fields (i.e. the solution of the minimization), vi the
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Fig. 2. Representation of weighting coefficients values αi,βi for each slice
i to be interpolated

Eulerian ascending displacement field relative to the slice
i, Wi the composition of Eulerian descending displacement
fields from n to i, La the Lagrangian displacement field which
allowed to use the Eulerian descending displacement field in
this privileged ascending version, and finally the coefficients
αi,βi which allowed to determine the contribution of each
term in equation 1. The solution of Bi is given by the
following equation 2:

Bi = αi(vi ◦Bi−1)+βi(Wi ◦La) (2)

The determination of coefficients αi,βi illustrated in Fig 2
was based on the assumption of a reduced accuracy of the
Eulerian propagation with respect to the distance from the
starting slice. This process can be repeated for a version with
an emphasis on the descending approaches (See Algorithm 1,
more specifically the term Ai). Then, both resulting fields Bi
and Ai were merged into a single field Pi which was applied
to the mask M0 in order to obtain each mask Mi (2D) with
the aim of getting the segmentation of the whole region of
interest (3D). More details about our method are described
in Algorithm 1.

Algorithm 1 segmentation propagation
Require: I (MRI images)

M (Manual mask only 2 slices: M0,Mn)
Ensure: M (Full segmented mask)

La = SyN(M0,Mn)
Ld = SyN(Mn,M0)
V−1←Wn+1← Identity
for i ← 0 to n do

vi = SyN(Ii, Ii+1)
Vi = vi ◦Vi−1
wn−i = SyN(In−i, In−i−1)
Wn−i = wn−i ◦Wn−i+1

end for
for i ← 0 to n do

Bi = αi(vi ◦Pi−1)+βi(Wi ◦La)
An−i = βn−i(wn−i ◦An−i+1)+αn−i(Vn−i ◦Ld)

end for
for i ← 0 to n do

Pi = αiBi +βi(Ai ◦La)
Mi = Pi(M0)

end for
return M



Our method allowed to keep the high accuracy of each Eu-
lerian propagation approach near their respective initial slice
(i.e. the lower slice of the field of interest for the ascending
version and the upper slice for the descending version). The
deformation fields resulting from the registration between the
masks manually segmented used for the Lagrangian approach
were used in order to perform a reference frame shift and
merge both Eulerian approaches.

III. EXPERIMENTAL VALIDATION

A. Subjects

The right thigh of 25 healthy men (22 ± 1 years, height
178 ± 6 cm, weight 68 ± 7 kg) were imaged using a
1.5T MRI scanner (MAGNETOM Avanto, Siemens AG,
Healthcare Sector, Erlangen, Germany). T1-weighted high-
resolution images (13 slices, field of view = 220 mm x 220
mm; matrix = 576 x 576; time repetition = 549 ms; echo
time = 13 ms; number of repetitions = 1; slice thickness = 6
mm; gap between slices = 6 mm, acquisition time = 5 min
18 s) were recorded using a turbo spin echo sequence. The
most distal slice was always acquired at approximately 10
cm upper the proximal border of the patella. The study was
approved by the local human research committee and was
conducted in conformity with the Declaration of Helsinki.

The manual segmentation of each individual muscle of the
quadriceps femoris (QF), i.e. vastus lateralis (VL), rectus
femoris (RF), vastus medialis (VM) and vastus intermedius
(VI), on all slices was performed by an expert (A.F., with
7 years of experience in evaluation of muscle anatomy and
geometry) using FSLview software, the 3D viewer included
in the FSL toolbox [12]. These manual segmentations were
considered as ground truth and were used in the following
sections for the comparative analysis with our propagated
segmentation.

B. Comparison of our method with native Eulerian and
Lagrangian approaches

The DICE similarity coefficient (DSC [13]) obtained for
each slice are illustrated in Fig.3 for our rectified propagation
approach (P) and the four native approaches La,Ld ,Vi,Wi.
These results highlighted our initial assumptions regarding
that both DSC values of ascending and descending Eulerian
approaches (respectively Vi and Wi) were optimal for their
respective initial slice but decreased exponentially for the
other slices. DSC values of ascending and descending La-
grangian approaches (respectively La and Ld) were similar
and the small differences between the results were mainly
due to registration errors. The results associated to La and
Ld showed that these approaches, on the contrary to Vi and
Wi, were less accurate for intermediate slices but converged
efficiently for their respective final slice.

The results indicated in Fig. 3 clearly illustrated that
our propagation approach did not only keep the positive
contributions of each native approach but also resulted in
a more accurate segmentation for each intermediate slice.
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Fig. 3. DSC values evolution for each slice comparing each method

C. Qualitative and Quantitative validation

The DSC, the false negative volume fraction (FNVF),
the false positive volume fraction (FPVF) and the muscle
volume similarity fraction (MVSF) were used to estimate the
performance of our method considering manual segmentation
as the ground-truth (all ranged from 0 to 1).

Values from Table.1 are presented as mean ± SD. These
metrics were obtained from a comparative analysis between
our propagation method based on an initial manual input of
two slices (located on the inferior and superior bounds of
the region of interest) and the overall manual segmentation.
As indicated, the average DSC values ranged from 0.87 to
0.94 while the FNVF and the FPVF values ranged from 0.04
to 0.18 and 0.07 to 0.10 respectively. Regarding the perfor-
mance related to the volume measurements, i.e. MVSF, the
range was 0.03-0.13. It is noteworthy that the segmentation
of the VM was the less accurate. As can be seen in Fig.
4, VM is the individual muscle with the larger anatomical
variability in the axial plane.

TABLE I
METRICS FOR EACH MUSCLE OF THE quadriceps femoris

muscle DSC FNVF FPVF MVSF
VL 0.94±0.01 0.04±0.01 0.08±0.02 0.05±0,03
RF 0.90±0.03 0.10±0.03 0.10±0.04 0.03±0,02
VM 0.87±0.02 0.18±0.03 0.07±0.02 0.13±0,05
VI 0.93±0.01 0.06±0.02 0.08±0.03 0.04±0,04

IV. CONCLUSION

So far, very few segmentation tools have been described
for individual muscles and their corresponding accuracy was
variable. In many other studies, segmentation has been per-
formed manually and has been recognized as time consuming
and operator-dependent. In the present study, we proposed
a supervised method which provides a high segmentation
accuracy with a minimal amount of time devoted to manual
segmentation and a low computational expense. Using a
manual input of 2 slices, the time allocated to manual
segmentation can be reduced by 85%.
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Fig. 4. A: Axial views of four manually-segmented slices M0,M4,M8,M12,
B: Sagittal and axial views of three intermediate slices A3,A6,A9
automatically-segmented slices using M0,M12 masks, C: Sagittal and axial
views of three intermediate slices A2,A6,A10 automatically-segmented slices
using M0,M4,M8,M12 masks, D: Boxplot representation of the relationship
between DSC values and the number of manually-segmented slices

The accuracy of our method was determined by various
parameters such as the anatomy of the areas of interest,
their variability in the axial plane and the distance between
the slices manually segmented. We mainly showed that with
the initial input of only two manually segmented slices, the
automated segmentation of the QF muscles was accurate on
a large part of the thigh. According to the metrics reported
in Table 1, our method provided better results as compared
to the full multi-atlas based automatic approach Le Troter
et al. initially proposed for the same muscle group [7] with
average DSC values ranging from 0.72 to 0.94. We expect
an even better accuracy of our method using a larger amount
of manually-segmented slices as initial input. As illustrated
in Fig. 4D, an initial input of 3, 4, 5 and 7 slices manually-
segmented at regular intervals, led to a substantial increase
in the mean DSC values for the individual and whole set
of labels. This increase was likely due to the additional
information provided by the additional manually-segmented
slices.

Given that the anatomy of whole leg muscles is quite
similar to the anatomy of the QF muscles, we expect that

our approach will also be robust for other individual muscles
of the thigh or calf inasmuch as our method can be adapted
to anatomical variations using the coefficients. On the same
basis, the segmentation of fatty-infiltrated muscles in patients
with neuromuscular disorders or other diseases resulting in
muscle volume loss and/or fatty infiltration might also be
possible. This will have to be tested in the near future.

REFERENCES

[1] Y. Barnouin, G. Butler-Browne, T. Voit, D. Reversat, N. Azzabou,
G. Leroux, A. Behin, J. S. McPhee, P. G. Carlier, and J.Y. Hogrel,
“Manual segmentation of individual muscles of the quadriceps femoris
using MRI: a reappraisal,” Journal of magnetic resonance imaging:
JMRI, vol. 40, no. 1, pp. 239–247, July 2014.

[2] P. Y. Baudin, N. Azzabou, P. G. Carlier, and N. Paragios, “Automatic
skeletal muscle segmentation through random walks and graph-based
seed placement,” in International Symposium Biomedical Imaging
(ISBI), Barcelone, Spain, May 2012, pp. 1036–1039.

[3] B. Gilles, L. Moccozet, and N. Magnenat-Thalmann, “Anatomical
modelling of the musculoskeletal system from MRI,” International
Conference on Medical Image Computing and Computer-Assisted
Intervention, vol. 9, no. Pt 1, pp. 289–296, 2006.

[4] J. W. Prescott, T. M. Best, M. S. Swanson, F. Haq, R. D. Jackson,
and M. N. Gurcan, “Anatomically Anchored Template-Based Level
Set Segmentation: Application to Quadriceps Muscles in MR Images
from the Osteoarthritis Initiative,” Journal of Digital Imaging, vol. 24,
no. 1, pp. 28–43, Feb. 2011.

[5] E. Ahmad, M. H. Yap, H. Degens, and J. S. McPhee, “Atlas-
registration based image segmentation of mri human thigh muscles
in 3d space,” in Proc. SPIE, 2014, vol. 9037, pp. 90371L–90371L–
12.

[6] M. Sdika, A. Tonson, Y. Le Fur, P. J. Cozzone, and D. Bendahan,
“Multi-atlas-based fully automatic segmentation of individual muscles
in rat leg,” Magma (New York, N.Y.), vol. 29, no. 2, pp. 223–235, Apr.
2016.

[7] A. Le Troter, A. Foure, M. Guye, S. Confort-Gouny, J. P. Mattei,
J. Gondin, E. Salort-Campana, and D. Bendahan, “Volume measure-
ments of individual muscles in human quadriceps femoris using atlas-
based segmentation approaches,” Magma (New York, N.Y.), vol. 29,
no. 2, pp. 245–257, Apr. 2016.

[8] J. Donea, A. Huerta, J. Ph. Ponthot, and A. Rodriguez-Ferran, “Ar-
bitrary Lagrangian-Eulerian Methods,” in Encyclopedia of Compu-
tational Mechanics. John Wiley & Sons, Ltd, Chichester, UK, Nov.
2004.

[9] B. B. Avants, P. T. Schoenemann, and J. C. Gee, “Lagrangian frame
diffeomorphic image registration: Morphometric comparison of human
and chimpanzee cortex,” Medical Image Analysis, vol. 10, no. 3, pp.
397–412, June 2006.

[10] C. Brun, N. Lepore, X. Pennec, Yi-Yu Chou, A. D. Lee, M. Barysheva,
G. I. de Zubicaray, K. L. McMahon, M. J. Wright, A. W. Toga,
and P. M. Thompson, “A lagrangian formulation for statistical fluid
registration,” in 2009 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, June 2009, pp. 975–978.

[11] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric
diffeomorphic image registration with cross-correlation: evaluating
automated labeling of elderly and neurodegenerative brain,” Medical
Image Analysis, vol. 12, no. 1, pp. 26–41, Feb. 2008.

[12] M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and
S. M. Smith, “FSL,” NeuroImage, vol. 62, no. 2, pp. 782–790, Aug.
2012.

[13] J. K. Udupa, V. R. Leblanc, Y. Zhuge, C. Imielinska, H. Schmidt, L. M.
Currie, B. E. Hirsch, and J. Woodburn, “A framework for evaluating
image segmentation algorithms,” Computerized Medical Imaging and
Graphics: The Official Journal of the Computerized Medical Imaging
Society, vol. 30, no. 2, pp. 75–87, Mar. 2006.


