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Abstract—Spatio-temporal feature descriptors are of great
importance for characterizing the local changes of 3D deformable
shapes. In this study, we propose a method for characterizing
3D shapes from point clouds and we show a direct application
on a study of organ temporal deformations. As an example,
we characterize the behavior of the bladder during forced
respiratory motion with a reduced number of 3D surface points:
first, a set of geodesically equidistant points representing the
vertices of quadrilateral mesh for the organ surface are tracked
throughout a long dynamic MRI sequence using a large defor-
mation diffeomorphic metric mapping (LDDMM) framework.
Second, a novel 3D shape descriptor invariant to translation,
scale and rotation is proposed for characterizing the temporal
organ deformations by employing an Eulerian Partial Differential
Equations (PDEs) methodology. We demonstrate the robustness
of our feature on both synthetic 3D shapes and realistic dynamic
Magnetic Resonance Imaging (MRI) data sequences portraying
the bladder deformation during a forced breathing exercise.
Promising results are obtained, showing that the proposed feature
may be useful for several computer vision applications such as
medical imaging, aerodynamics and robotics.

Index Terms—LDDMM, PDEs, eigen analysis, motion estima-
tion, high-resolution reconstruction

I. INTRODUCTION

Computer vision, pattern recognition, and image processing
techniques have played a crucial role in the development
of several healthcare applications such as clinical data ac-
quisition and post-processing. In this paper, we propose a
generic pipeline for the characterization of highly deformable
3D shapes. As an application, we characterize the bladder
dynamics during forced respiratory motion to help surgeons
and clinicians for better understanding the pelvic floor dis-
orders, frequently occuring in women older than 50 years.
This clinical context is the primary motivation of this work,
the results of which go beyond this framework and can be
generalized to any 3D shapes.

Dynamic MRI is a non-invasive imaging technique that has
made it possible to explore the pelvic floor system during
respiratory motion. However, dynamic MRI suffers from its
low-resolution (LR) in addition to its sensitivity to motion
artifacts. In the literature, only a few studies have attempted
to track pelvic organ deformations in vivo. Rahim et al. [1]
proposed a diffeomorphic mapping based characterization of
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temporal dynamic MRI sequences to quantify the temporal
deformation of the pelvic floor organs in 2D+t. However,
a more informative 3D+t quantification of their dynamics
is necessary because of the large shape variability of the
pelvic organs across time. To overcome these limitations, a
combination of spatial resolution of conventional static MRI
and temporal resolution of dynamic MRI data is necessary.
First studies for estimating dense deformation fields from a
static MRI scan to a set of LR dynamic MRI scans are
presented in [2], [3] in the context of articulated polyrigid
registration of human joints. A similar study to perform a high-
resolution (HR) temporal reconstruction of the bladder volume
during loading exercises is recently proposed in [4]. Promising
results have been obtained, showing the bladder in its 3D
complexity during deformation due to strain conditions with
an estimation of the most deformed tissue areas. In this work,
we propose to exploit the full potential of such reconstructed
data for characterizing the bladder deformations in the HR
domain. For a compact shape representation, we parameterize
the reconstructed organ surface with a reduced number of
points representing the vertices of a temporal quadrilateral
mesh in order to use the generated (3D+time) smooth mesh
sequence for finite element simulations. This configuration is
then required for establishing a robust biomechanical model of
organ dynamics [5]. Since the mesh vertices can be considered
as a 3D point cloud, we analyse a set of common covariance-
based features incorporating the concept of ”neighborhood of
a point”, introduced in [6] and applied in [7]–[9], pinpointing
some limitations regarding their sensitivity to noise and their
dependency on point cloud density. Instead, we propose a
different feature type based on the optimal geodesic path that
maps the moving surface point to its corresponding one in
the surrounding sphere in order to evaluate the local shape
variability around that point. In [10], Yezzi et al. introduced
a robust Eulerian PDE approach for computing the thickness
of soft tissues based on the solution of Laplace’s equation
between two non-intersecting boundaries. In this work, we ex-
tend this approach to compute geodesic distances and shortest
paths and curves from an arbitrary shape to its surrounding
sphere in order to derive a new geometric feature which is
invariant to translation, scaling, and rotation. Obtained results
on synthetic shapes demonstrate that the proposed feature
outperforms traditional covariance-based features.
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II. RELATED WORK

A. Point cloud tracking

Point cloud tracking has led to many significant advances
in many computer vision applications such as robotics [11],
astronomy [12] and medical imaging [1]. Tracking a set of
points can be formulated as a registration problem where
the goal is to align between two point sets representing a
3D shape at two different times. The Iterative Closest Point
algorithm, originally proposed in [13] for estimating a global
linear transformation to align two point sets, has been extended
for non-linear registration of large 3D point sets based on
a statistical expectation–maximisation (EM) algorithm [14].
However, robustifying this algorithm face to local minima
problems occuring during the optimization of cost function
remains a challenging task. The LDDMM registration frame-
work [15] has made it possible to estimate smooth continuous-
time trajectories mapping between two point clouds without
having to use point-to-point correspondence. This parametric
Riemannian-based framework can deal with large deforma-
tions, yielding geometric transformations characterized with
a list of nice algebraic properties such as smoothness, differ-
entiability, and invertibility. The LDDMM introduced in [16]
has been extended to several applications: a Bayesian atlas
application is proposed in [17]. A geodesic shape regression
with multiple geometries and sparse parameters is presented
in [18]. In [15], the authors have detailed a scheme for parallel
transport on a high-dimensional manifold of diffeomorphisms
based on the LDDMM. In this work, we propose to employ the
LDDMM to estimate a smooth continuous curves of highly-
deformable shapes represented with a set of sparse parameters
(i.e. the surface S is sampled using a set of points {xi}Ni=1).

B. Feature extraction from 3D point cloud data

Feature extraction is a crucial process in every knowledge
representation and classification [19]. In particular, most stud-
ies working on point clouds are based on an eigenanalysis
method employing features derived from a local structure
tensor, i.e. local covariance matrix calculated from each
point neighborhood. These matrices represent a second-order
invariant moments within the point positions [6], [8], [20]. The
local covariance matrix is defined on a k-neighborhoods of a
given point p according to:

C(p) =
1

k

k∑
i=1

(pi − p)(pi − p)T (1)

where {pi}i∈{1...k} are the k nearest neighbor points to the
point p, and p holds the centroid of the neighbors {pi}i∈{1...k}.

The obtained covariance matrix at each point is symmetric
and positive semi-definite. The eigenvectors {e1, e2, e3} of the
covariance matrix together with their corresponding eigenval-
ues {λ1, λ2, λ3} allow to locally estimate the surface variation.
Assuming that the eigenvalues of C(p) are sorted as follows:
0 ≤λ1 ≤ λ2 ≤ λ3, some of the covariance-based features are:
the anisotropy: Aλ = λ3−λ1

λ3
; and the curvature: Cλ =

λ1

λ1+λ2+λ3
.

These geometric features have been used in many appli-
cations such as point-sampled surfaces simplification [6], 3D
point cloud classification [21], and recently used for detec-
tion and characterization of defects on airplane exterior sur-
faces [8]. The key idea of this approach is to derive geometric
features from a suitably chosen neighborhood size. However,
the optimal neighborhood size is hardly predictable [22] and
the proposed features may not be robust and effective enough
for some complex geometries.
The geodesic distance is of great importance for solving many
computer vision problems such as surface segmentation into
regions called Voronoi cells, sampling of surface points at
regular geodesic distance, and meshing a 3D surface with
geodesic Delaunay triangles. In the work of Peyré et al. [23],
the optimal geodesic curve mapping between two surface
points is obtained using Riemannian metric tensors by in-
tegrating an ordinary differential equation (ODE) modeling
the spatio-temporal evolution of surface variation using the
Riemannian Eikonal equation. To cope with the dependency
of numerical accuracy on the size of vertex neighborhood used
for deriving local tensors, we propose in this work a level set
method for mapping a shape to a sphere by minimizing a
Dirichlet energy. Equivalent for curves of heat equation and
independent of parameterization, it can be used for evalu-
ation of surface variation using an Eulerian PDE approach
(extrinsic), with no need to evaluate the Riemannian tensor
(intrinsic curvature) which not only incurs high computational
costs [24], but also impacts numerical stability during motion.

III. METHODS

A. Dynamic quadrilateral mesh

1) Quadrilateral mesh generation: In this part, we first
extracted iso-surfaces from the reconstructed organ volumes
(i.e. 3D binary masks) at the first time frame using the
marching cubes algorithm. The marching squares/cubes is
the standard algorithm to extract iso-curves/surfaces from a
discretized image/volume [25]. Then, and to take into account
the complexity of the organ shape, a topologically regular
quadrilateral mesh of the organ surface is generated for the
first reconstructed volume in the sequence, using a robust
algorithm presented in [26]. This algorithm is robust enough
to establish a convex quad mesh for the organ surface since
it avoids irregularity problems at the poles, as encountered
in [27], despite some singularities which can be regularized by
mesh upsampling in order to obtain a pure quad mesh. Fig. 1
illustrates the quality of the obtained mesh. Then, we propose
to track the mesh vertices while preserving their connections
(i.e. while keeping the faces unchanged). This allows for
constructing a spatio-temporal structured meshes which might
be used later for deriving some biomechanical properties
of the organ dynamics such as distortion, elongation and
stresses using finite element methods which are required for
establishing a biomechanical model for the organ dynamics.

2) Estimation of smooth vertex trajectories: In this section,
we present a methodology to track the set of mesh vertices
during the bladder deformations. This is done using the
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Fig. 1. Quadrilateral mesh for the organ, from left to right: the position field,
and the output mesh.

LDDMM framework that has been heuristically shown to
produce natural deformation paths compatible with the physics
of deformations. A smooth and continuous-time trajectory of
each vertex is estimated throughout the organ range of motion.
The LDDMM framework can be used for manipulating dense
imagery and for tracking a dynamic set of feature points
over a long dynamic MRI sequence. The bladder deformation
can be interpreted and parameterized using a control-points-
based LDDMM method for constructing diffeomorphisms of
the ambient space R3. This framework estimates a smooth and
invertible deformation field which maps a shape to another one
without having to use point-to-point correspondence.

The principle of control-points-based LDDMM for estimat-
ing a diffeomorphic mapping is as follows:
Given a set of N control points {qi}i∈1,...,N , and a set of
N corresponding momentum vectors of R3 {µi}i∈1,...,N , the
velocity vector in the tangent space TxM of the parametric
surface M at a point x ∈ M, is obtained through the use of
a Gaussian convolution filter:

v : x ∈ R3 7→ v(x) =

N∑
i=1

K(x, qi).µi (2)

where K(xi, xj) = exp(−||xi−xj ||2/σ2) is a gaussian kernel.
The temporal evolution of the organ velocity vector field can

be modeled by the following Hamilton’s equations of motion:{
q̇(t) = K(q(t), q(t)).µ(t)

µ̇(t) = − 1
2∇q{K(q(t), q(t)), µ(t)>µ(t)}

(3)

Solving this pair of PDEs using a second-order Runge-
Kutta scheme gives a smooth temporal velocity vector field
parameterized with q(t) and µ(t):

v : x ∈ R3×t ∈ [0, 1] 7→ v(x, t) =

N∑
i=1

K(x, qi(t)).µi(t) (4)

The temporal displacement of each tracked point x ∈M is
governed by the following ODE:

ẋ(t) = v(x(t), t) (5)

with the initial condition x(0) = x.
Finally, the solution of this ODE yields a flow of dif-

feomorphisms starting from the source points (i.e. starting

from the identity in the space of transformations), Φq,µ(., t) :

R3×[0, 1] 7→ R3, such that Φq,µ(., 1) = Id+
∫ 1

0
v(Φq,µ(., t))dt

is the end-point of the geodesic flow matching the given point
sets.

The overall algorithm for point tracking is described in
Algorithm 1, with the following notations: L is the length
of the dynamic sequence; Mt gives the locations of the point
set being tracked at time t; Ct is the entire 3D surface point
cloud at time t; where Mt is a proper subset of Ct. Note that
the registration problem is solved by iteratively minimizing
the following loss function:

f(q, µ) = d(Ct+1,Φq,µ(Mt)) +R(q, µ) (6)

where the first term measures data-attachment while the sec-
ond regularization term represents the norm of the deforma-
tion. An illustration is given in Fig. 2.

Algorithm 1 Tracking of mesh vertices
Input: Mesh vertices M0.
Motion estimation: Estimate forward successive point tra-
jectories using the LDDMM {Mt+1}t =0,...,L−1 such that
Mt ⊂ Ct, for t = 0, . . . , L− 1, by aligning Mt and Ct+1.

Fig. 2. Pointset tracking: : M0 in red, Mt in green, and Ct in white.

B. Feature analysis: a novel geometric feature type
In this section, we propose a robust global feature to detect

the surface variation in terms of concavity and convexity with
smooth transitions in-betweens by minimizing the Dirichlet
energy inside the surface between shape and a surrounding
sphere. This gives a set of paths of minimum Dirichlet energy
(i.e. a set of geodesics) that are used to map a shape to a
sphere.

Definition Let Ω be a bounded, smooth open subset of Rn.
And let h : Ω → R be a differentiable function over Ω, the
Dirichlet energy of h is defined by the following quantity:

E[h] =
1

2

∫
x∈Ω

||∇h(x))||2dx (7)

where ∇h : Ω→ Rn is the gradient vector field of h.
Solving Laplace’s equation ∆h(x) = 0, ∀x ∈ Ω, subject
to appropriate Dirichlet boundary conditions, is equivalent to
solving the variational problem of finding a function h that
satisfies the boundary conditions and has minimal Dirichlet
energy.
For a closed 3D shape S, the proposed feature can be
numerically approximated using an Eulerian PDE approach,
involving the following steps.
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Definition of Dirichlet boundary conditions:

To initialize the algorithm, the binary mask of the shape is
eroded with a cross-shaped structuring element which is best
suited for fine structures. The choice of the structuring element
is of great importance for preserving, as much as possible, the
topology of any arbitrary shape. This gives the eroded binary
mask that we note Se. Then, we use a PCA analysis of S in
order to determine the radius R of the surrounding sphere Ss
centered at the shape centroid. The radius R is proportional
to the length of the principal axis of inertia l (R = 0.8l). At
this level, all the surface points will be located between two
non-intersecting boundaries: Sin = Se, and Sout = S̄s.
The next step consists of computing the length of the shortest
geodesic paths from Sin to Sout in a bijective fashion.

Solving the Laplace equation, subject to Dirichlet boundary
conditions:

This primordial step consists of solving the Dirichlet prob-
lem, also known as the problem of finding a function which
solves a specified PDE inside a region that takes prescribed
values on its boundaries. The Dirichlet energy is intimately
connected to Laplace’s equation. In practice, we are looking
for an elliptic twice-differentiable function h : R3 → R
which satisfies the Laplace’s PDE ∆h = div(grad(h)) = 0
inside the region Ω = Sin ∪ Sout, subject to the Dirichlet
boundary conditions h(∂Sin) = 104 and h(∂Sout) = 0. The
physical intuition behind is to determine the equilibrium heat
distribution in a perfectly symmetric spherical room since the
divergence of the gradient vector field corresponds to some
kind of fluid flow.
To approximate the numerical solution of Laplace’s equation,
we use the Jacobi iterative relaxation method which is simple
to implement and which allows fast approximation of the
solution in cartesian coordinates:

ht+1(i, j, k) = 1
2(d2id

2
j+d2id

2
k+d2jd

2
k)

(d2
jd

2
k[ht(i+ di,

j, k) + ht(i− di, j, k)] + d2
i d

2
k[ht(i, j + dj , k) + ht(i, j

−dj , k)] + d2
i d

2
j [ht(i, j, k + dk) + ht(i, j, k − dk)])

(8)

where t is the iteration index. In this work, we process recon-
structed data with an isotropic voxel spacing of 1× 1× 1mm
(i.e. di = dj = dk = 1).

Computing the normal vectors to the tangent planes to the
harmonic layers:

Determine elementary normal paths from Sin to Sout, i.e.
from the normalized gradient vector field of the harmonic
interpolant h, ~T = ∇h

‖∇h‖ = (Ti, Tj , Tk)T . This velocity vector
field corresponds to a one-to-one mapping.

An Eulerian PDE computational scheme:

We estimate the lengths of optimal geodesic paths
between the two boundaries, by solving a couple of PDEs:
∇L0. ~T = −∇L1. ~T = 1. L0 and L1 are first initialized to
0.5 and then iteratively updated using a symmetric relaxation

Gauss-Seidel method:

Lt+1
0 [i,j,k]
α = 1 + |Ti|Lt0[i∓ 1, j, k] + |Tj |Lt0[i, j ∓ 1, k]

+ |Tk|Lt0[i, j, k ∓ 1]
(9)

Lt+1
1 [i,j,k]
α = 1 + |Ti|Lt1[i± 1, j, k] + |Tj |Lt1[i, j ± 1, k]

+ |Tk|Lt1[i, j, k ± 1]
(10)

where:
{
m± 1 = m+ sgn(Tm);m∓ 1 = m− sgn(Tm)
for m ∈ {i, j, k}; and α = 1

|Ti|+|Tj |+|Tk|

with: sgn(.) is the sign function, L0(x) is the length of
the optimal geodesic path from the point x = (i, j, k) to Sin,
while L1(x) is the length of the optimal geodesic path from x
to Sout. The sum of these two lengths G(x) = L0(x)+L1(x),
defined as thickness in [10], represents in fact the length of the
optimal geodesic path from Sin to Sout that passes through x.
These geometric methods which are based on a fully Eulerian
point of view allow one to handle time derivatives with finite
differences in a bounded physical domain that exhibit large
deformations and topology changes.

Convergence criterion:

The numerical solution of Laplace’s equation is iteratively
relaxed by finite differences. All grid points inside Ω are
visited at each iteration. A convergence criterion can be
defined by the following expression based on the total field
energy over Ω: εt =

∑
x∈Ω

√
(∆ht

di )2 + (∆ht

dj )2 + (∆ht

dk )2,

where ∆ht

di = ht(i+di,j,k)−ht(i−di,j,k)
2 . The Jacobi iterative

computational scheme of eq (8) converges when the ratio
ε = εt−εt+1

εt
becomes smaller than a user-defined threshold

(typically about 10−5). To speed up the algorithm, we strongly
recommend to keep the number of iterations as a user defined
parameter in order to avoid the repeated evaluation of ε at each
iteration. A total number of 200 iterations is used for solving
the Laplace’s equation and the pair of PDEs in this work.

Proposed feature to characterizing the surface variation:

Finally, we define a flexible feature by the following appli-
cation f̃ : R3 → R:

f̃(x) =
R

G(x)
(11)

Note that L1 >> L0 for all the surface points so that G ' L1

and only one PDE has to be solved to calculate the feature
function. The function f̃ has the potential to characterize the
surface variation and to delineate between concave, convex and
flat regions with smooth transitions in-between, as illustrated
in Fig 6 for both torus and ellipsoid. Relatively, the largest
feature values correspond to the most convex areas in the
surface while the smallest values correspond to the most
concave areas. Furthermore, this feature is invariant to scale
since the sphere radius is proportional to the length of the
principal axis of inertia of the shape; invariant to rotation
thanks to spherical symmetry; and also invariant to translation
since the sphere center coincides with the shape centroid. An
illustration of all the previous steps is presented in Fig. 3.
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Fig. 3. Proposed method (Stanford Bunny example): (a) binary mask and its
eroded; (b) solution of the Laplace equation h; (c) length of the geodesic path
from x to the surrounding sphere L1; (d) length of the geodesic path from
x to the inner boundary L0; (e) length of the resulting geodesic path G; and
(f) feature values f̃ between the two boundaries.

Fig. 4. Local characterization of 3D surfaces. First row: the covariance-based
shape curvature with 4-nearest neighbors. Second row: our proposed feature
based on the geodesic distances. The columns show the robustness of our
metric face to the point cloud density: first column: voxel size equal to 1
(i.e., we keep all the contour points), second column: with a voxel size of 3,
and with a voxel size of 7 in the third column.

IV. EXPERIMENTS AND RESULTS

A. Data set

Pelvis areas of six healthy participants were imaged with
a 1.5T MRI scanner (MAGNETOM Avanto, Siemens AG,
Healthcare Sector, Erlangen, Germany) using a spine/phased
array coil combination. T1/T2W bSSFP images (TR: 125 ms,
echo time: 1.25 ms, flip angle: 52◦, field of view: 299 x
350 mm2, pixel size: 1.36 x 1.36 mm2, slice thickness: 6
mm, multi-planar configuration) were recorded during a 1:20-
minutes forced breathing exercise. During this exercise, the
subject alternately inspired and expired at maximum capacity.
Subjects were also instructed to increase the pelvic pressure to
the maximum inspiration and contrary to contract the pelvic
floor during the expiration. These actions increased the intra-
abdominal pressure, causing deformities of the pelvic organs.
The study was approved by the local human research com-
mittee and was conducted in conformity with the Declaration
of Helsinki. Since no extrageneous liquids was injected into
pelvic cavities in this study, only the segmentation of the
bladder was performed and the analysis focused exclusively

on this organ. For each subject, the three-dimensional dynamic
sequences acquired in multi-planar configurations allowed the
reconstruction of nearly 400 bladder volumes generated at a
rate of 8 volumes per second.

B. Validating the point-tracking process

The parameters of our registration algorithm are set as
follows: the standard deviation of the Gaussian kernel defined
in (2) is set to σ = 10−4 in order to obtain a deformation field
with a very thin level of precision. The kernel-width parameter
for controlling the granularity of the deformation is set to
8. 15 intermediate states describing the temporal evolution
of the tracked points are estimated in order to obtain a
smooth continuous-time trajectory of the organ shape between
successive time frames. The loss function defined in (6) is
minimized using the gradient ascent optimization method. All
experiments are performed on an Intel® Xeon® Processor
Silver 4214 CPU @ 2.20GHz, with a physical memory of
93GB. For the first subject for example, Algorithm 1 takes
6 sec to align a set of 342 tracked point set Mt, with the
target set Ct, composed of 5686 points for which only a set
of 210 control points have been used for optimizing the shape
matching.

To validate the tracking process, we propose to compute the
following error:

E =
1

N

N∑
p=1

dist(xp, CL) (12)

where: N is the total number of tracked points; xp ∈ML;
and dist(xp, CL) is the Euclidian `2 distance between xp and
the closest point xl in the last reconstructed surface CL. A
propagated mean error of 0.63 ± 0.06 is obtained across all
subjects. The resulting error is always inferior to 1mm which
reflects the tracking accuracy level for a given isotropic voxel
size of 1 × 1 × 1mm. Fig. 5 shows the quality of our 3D+t
quadrilateral mesh reconstruction based on smoothly tracking
vertices using the LDDMM while keeping the mesh faces
unchanged.

Fig. 5. 4D reconstructed quad mesh during forced respiratory motion.

C. Feature application to synthetic data

The performances of our 3D geometric descriptor are evalu-
ated on some known synthetic surfaces, (see Fig. 6). Since all
the covariance-based features, detailed in section II, describe
the local surface variation, we compared our 3D geometric
descriptor with the surface curvature. The covariance-based
curvature is computed using 4-nearest neighbors. Each point
neighborhood is determined using a ball tree algorithm. An
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Fig. 6. Feature application to symmetric and non-symmetric 3D shapes.

Fig. 7. Characterization of the organ shape variability at mid and extreme
range of motion: The first row shows the texture mapping of our geometric
feature on bladder meshes, while the second row shows the mesh elongations.

example of a point neighborhood is illustrated in Fig 1 (the
black point and its 4-nearest neighbors in green). Fig. 4 shows
that contrary to our feature, the covariance-based features
become more sensitive to noise with an increase of the total
number of surface points.

D. Characterization of bladder deformations

The main application of this study consists of characterizing
the bladder deformations during repeated respiratory motion
cycles. Fig. 7 illustrates the characterization of the organ shape
variability at mid and extreme range of motion: resting state
t = 0, maximum of inspiration t = 65 causing a huge organ
contraction, and maximum of expiration t = 140 inducing
an important bladder swelling. The mapping of our feature
as a texture on the reconstructed quadrilateral mesh surface
is presented in first row, first column of the figure. Second
and third columns show surface motion patterns relative to
the reference resting state, highlighting the regions the most
affected by deformations. The second row shows the mapping
of mesh elongations on the surface w.r.t. the resting state. The
elongation also called the Green-Lagrange deformation is a
commonly used feature for characterizing local deformations
and it measures the level of the spacing in the neighborhood
of a point.

In order to characterize the bladder deformations during
loading exercises for each subject, we compute our invariant
geometric descriptor for the temporal organ surfaces, then we
compare each feature map at a time frame t with that of
the initial one (t = 0) using the Pearson correlation metric.
Results presented in Fig. 8 illustrate the temporal correlation

curves for three subjects. For each motion cycle, a decrease
of the correlation value indicates an organ deformation w.r.t
the reference (initial shape), this can be interpreted by the fact
that forced inspiration involves an action of the diaphragm and
abdominal muscles that induces deformations of the internal
pelvic organs. Otherwise, when the correlation values increase,
the patient releases the pressure and consequently the bladder
relaxes and its surface returns to its initial state (t = 0). Taking
for example the case of the second subject, for time frames
t ∈ [0, 30], we note a correlation drop down from 1 to 0.9
characterized by an inspiration mode. Beyond t =30 to 50, the
increase of correlation values reflects the fact that the subject
is in expiration mode. So on, the correlations between the
shapes of the bladder vary according to the breathing mode
applied by the patient. The presence of noise (especially for
S1 and S3) is simply caused by errors of 3D reconstruction
of the sequences from dynamic MRI and also due to the
instability of the respiratory motion cycles for each subject.
Fig. 9 illustrates the temporal evolution of feature values for
two surface regions (from S1): a first point p0 is selected
from a non-highly deformable surface region (the bladder neck
supported by the pelvic floor muscle). The average feature
values in the 8-neighborhood of p0 are then calculated to
evaluate the local behavior of the surface variation around that
point. A second point p1 is selected from a highly deformable
lateral region (the apex) so that the corresponding temporal
feature curve fluctuated over time. This confirms that our
geometric descriptor is capable of separating between surface
regions undergoing different deformation rates with respect to
the neutral position (resting state).

V. CONCLUSION

In this paper, we have developed a framework for character-
izing the temporal evolution of 3D shapes and we have showed
an example of application with data acquired from in vivo ob-
servations of moving bladder using dynamic MRI sequences.
A 4D smooth quad mesh is first established using non-linear
diffeomorphic registration. Second, a new geometric feature is
proposed to deal with large deformations based on mapping
a shape to a sphere. Results demonstrate the robustness of
our descriptor no matter how sparse the point cloud may be.
Future works will include the calculation of different biome-
chanical parameters from the obtained dynamical quadrilateral
meshes such as distortions, strains and stresses.Furthermore,
the pipeline will be applied to characterize other vital organs
such as the heart during cardiac motion.
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