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a b s t r a c t 

Background and objectives: Dynamic Magnetic Resonance Imaging (MRI) may capture temporal anatomi- 

cal changes in soft tissue organs with high-contrast but the obtained sequences usually suffer from lim- 

ited volume coverage which makes the high-resolution reconstruction of organ shape trajectories a major 

challenge in temporal studies. Because of the variability of abdominal organ shapes across time and sub- 

jects, the objective of the present study is to go towards 3D dense velocity measurements to fully cover 

the entire surface and to extract meaningful features characterizing the observed organ deformations and 

enabling clinical action or decision. 

Methods: We present a pipeline for characterization of bladder surface dynamics during deep respiratory 

movements. For a compact shape representation, the reconstructed temporal volumes were first used to 

establish subject-specific dynamical 4D mesh sequences using the large deformation diffeomorphic metric 

mapping (LDDMM) framework. Then, we performed a statistical characterization of organ dynamics from 

mechanical parameters such as mesh elongations and distortions. Since we refer to organs as non-flat 

surfaces, we have also used the mean curvature change as metric to quantify surface evolution. However, 

the numerical computation of curvature is strongly dependant on the surface parameterization ( i.e . the 

mesh resolution). To cope with this dependency, we employed a non-parametric method for surface de- 

formation analysis. Independent of parameterization and minimizing the length of the geodesic curves, it 

stretches smoothly the surface curves towards a sphere by minimizing a Dirichlet energy. An Eulerian PDE 

approach is used to derive a shape descriptor from the curve-shortening flow. Intercorrelations between 

individuals’ motion patterns are computed using the Laplace-Beltrami Operator (LBO) eigenfunctions for 

spherical mapping. 

Results: Application to extracting characterization correlation curves for locally-controlled simulated shape 

trajectories demonstrates the stability of the proposed shape descriptor. Its usability was shown on MRI 

acquired for seven healthy participants for which the bladder was highly deformed by maximum of in- 

spiration. As expected, the study showed that deformations occured essentially on the top lateral regions. 

Conclusion: Promising results were obtained, showing the organ in its 3D complexity during deforma- 

tion due to strain conditions. Smooth genus-0 manifold reconstruction from sparse dynamic MRI data is 

employed to perform a statistical shape analysis for the determination of bladder deformation. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Pelvic floor disorders affect approximately 50% of women older 

han 50 years [1] . Related health problems such as urinary and 

ecal incontinences get worse with age which affects activities of 

aily living. Dynamic MRI examinations are now essential for the 

nvestigation of the pelvic area as they allow a non-invasive obser- 
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ation of the main organ deformations [2] . Current clinical prac- 

ice involves 2D dynamic MRI acquiring a single sagittal plane per 

ime frame [3] . However, in-plane and out-of-plane deformations 

an simultaneously occur, thus limiting the ability to assess the 

ffective 3D deformations from the 2D images. In the context of 

elvic floor, 3D imaging has remained exclusive to static MRI so far, 

n order to observe pelvic floor anatomy at rest during instructed 

pnea . In fact, the MRI-modalities are still too slow to follow the 

ovements within a reasonably short duration. Moreover, most of 
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on-invasive and fast 3D acquisitions suffer from intrinsically low 

olume rates [4,5] . 

Assuming that 58% of women who undergo surgery have re- 

orted a recurrence of pelvic disorders [6] , one of the most chal- 

enging tasks is to enhance the understanding of the organ con- 

ections and their morphological changes under strain conditions. 

eyond visual inspection by a radiologist, a more relevant quanti- 

ative information about pelvic organ deformations is required to 

upport surgeons’ needs for optimization of implant position and 

ost-surgical follow-up of patients. To address these needs, some 

ecent studies [7,8] have begun to create a biomechanical model 

f organ interactions, while other studies focused on the role of 

D reconstruction in the assessment of organ motion [9,10] . Both 

hese approaches pave the way for a better understanding of or- 

an behaviors and they would profit from an efficient descriptor 

f organ temporal 3D deformations. Indeed, such a tool could be 

ppreciable to simplify the visualization and the statistical identi- 

cation of the most common deformations, and to compare organ 

ynamics simulations to organ dynamics observations, to name a 

ew gains. Furthermore, comparing organ movement between pa- 

ients would allow to identify and grade abnormal motion in order 

o classify patients into healthy and pathological, or into subgroups 

haring similar organ motion characteristics within large data sets, 

hich will optimize surgical and non-surgical treatments by avoid- 

ng unnecessary duplication of effort across patients. 

From a methodological point of view, in vivo characterization of 

he dynamical behavior of human joints, organs, and soft tissues 

uring daily physical activities remains challenging because of the 

omplexity and the non-linearity of their shape dynamics [11–16] . 

uring the last decade, statistical shape analysis tools have been 

hown to be clinically useful, in particular, to help understand pat- 

erns in large clinical data sets and to characterize the functioning 

oft tissue organs or anatomical structures undergoing large de- 

ormations [17–22] . However, one should keep in mind that sim- 

ly encoding deformations with some displacement vector fields is 

ot sufficient to identify clinically relevant patterns of the induced 

rgan deformations because of the complexity of their dynamics. 

herefore, space-time statistics should be based on robust and sta- 

le surface features or even better, geometric shape descriptors 1 . 

n other words, the temporal feature changes should characterize 

he local shape deformations. Since shape space is not necessarily 

at, then statistical tools derived from Euclidean geometry are not 

ell adapted to study organ shape dynamics. Under such circum- 

tances, it is practically meaningful to employ Riemannian geom- 

try for generating shape trajectories which belong to non-linear 

anifolds [23,24] . Relying on the notion of geodesic distances on 

anifolds to compute the shortest paths between two points on 

 curved surface [25] , these tools cover topics that start from the 

undamentals of general relativity theory [26] . 

In practice, several studies for characterizing spatio-temporal 

hape trajectories have used longitudinal datasets aiming at quan- 

ifying: the shape growth over a long period of time [27] (in- 

rasubject variations in geometry), or the shape variability in an 

nter-subject context ( e.g. for atlas building at the population 

cale [28] ). Longitudinal data consist of a collection of station- 

ry scans ( e.g. conventional high-resolution MRI scans) portray- 

ng anatomical changes during a large period of time (over weeks, 

onths, or even years depending on the studied pathology or phe- 

omenon). Such studies have served to highlight the need for clin- 

cians to understand anatomical changes occurring during develop- 

ent or disease progression (e.g. linear geodesic regression model 

or shape time-series with sparse parameters [19,21] ). In the con- 

ext of spatio-temporal bladder imaging [29] , longitudinal samples 
1 The two terms are used interchangeably throughout the paper. 

w

m
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2 
re often limited by bladder volume variation which may cause an 

ncrease in scaling effects. A solution is to perform short-time non 

nvasive imaging in order to assess the effective deformations of 

onstant bladder volumes. The latter condition is essential to di- 

ect the radiotherapy of pelvic tumors with precision [30] . 

As compared to longitudinal studies, temporal studies using dy- 

amic MRI may non-invasively capture anatomical changes during 

otion over a short period of time, but at the cost of having: (1) 

ess spatio-temporal resolution of anatomical data sequences, (2) 

igher sensitivity to motion artifacts, and (3) an increased effect 

f image noise. Overcoming these difficulties that appear in sparse 

patio-temporal data is a whole new challenge, especially when 

t becomes necessary to have a high spatio-temporal resolution of 

hape trajectory in order to carry out statistically significant stud- 

es. 

In this paper, we have employed diffeomorphic statistical shape 

ools to evaluate organ surface dynamics. We show the strength 

f the approach by characterizing 3D MRI observations of blad- 

er under strain conditions. Starting from sets of high resolu- 

ion reconstructed temporal bladder volumes, we have first em- 

loyed the large deformation diffeomorphic metric mapping (LD- 

MM) framework to encode the organ’s large deformations with a 

educed number of significant surface points while covering prop- 

rties in shape geometry. A dynamical quadrilateral mesh for the 

rgan surface is then established to address the need for pre- 

erving neighborhood structures when computing geometric de- 

criptors, that are classically used in biomechanics, such as mesh 

longations and distortions. Then, characterizations of organ shape 

ynamics are performed by computing mean curvature changes. 

oreover, a new geometric feature is also proposed. It allows de- 

ecting salient motion patterns from geodesic shortest length paths 

or mapping a shape to a sphere. It satisfies the ”invariance” con- 

itions of Kendall’s shape space [31] , by filtering out location, size 

nd rotation. This feature may capture local surface variations, with 

o need to compute Riemann’s tensor. This last point is an inter- 

sting advantage as computing tensors not only incurs high com- 

utational costs but also impacts numerical stability [32] . Results 

emonstrate that the proposed feature, possessing a high repeata- 

ility score of measures throughout cyclic shape trajectories, is 

uch more numerically stable. 

Since we are interested in comparing organ shapes in terms 

f their geometry rather than their size, we performed all com- 

arisons in a common shape space . Indeed, motion patterns de- 

ived from the different feature vectors were projected onto the 

nit sphere S 
2 (point-to-point anatomical correspondences be- 

ween these geometric features were established across subjects). 

. Related work 

In the literature, some studies show attempts to quantify or 

odel human soft tissue in a non-invasive manner during daily 

iving activities [16,18,33] . In [34] , the authors proposed a semi- 

utomatic segmentation framework to track the motion of the 

ongue and to measure its internal deformation during speech and 

wallowing using dynamic MRI. In contrast, the temporal resolu- 

ion was limited and the tongue trajectory was only represented 

y 26 reconstructed volumes, each with a voxel size of 1 . 875 ×
 . 875 × 1 . 875 mm. In [16,35] , a first attempt to quantify the ankle

oint motion patterns through a combination of static and dynamic 

RI data was presented. A tracking of bones and surrounding soft 

issues was performed by estimating a dense deformation field 

overing the entire field of view from the static scan to dynamic 

ime frames using the Log Euclidean Polyrigid registration Frame- 

ork (LEPF) [36] . However, in the context of pelvic floor dynamics, 

ost biomechanics simulation experiments have been hampered 

y the lack of relevant data due to limitations of spatio-temporal 
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Fig. 1. Parameterization of the bladder surface, from left to right: the orientation field, the position field, the quad dominant mesh, and the resulting pure quad mesh. 
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esolution of dynamic MRI [7,8] . In [8] , 2D dynamic MRI images 

ere combined with 3D biomechanical models in order to extrap- 

late the complete 3D dynamic motion of abdominal organs. A val- 

dation attempt was performed by checking that the reconstruc- 

ions were well conducted from the first scan towards the end of 

ynamic sequence. However, the validation itself was not founded 

n a clinically relevant ground truth (i.e. the validation was not 

erformed in the high resolution domain). Furthermore, only two 

imulated sequences have been used to validate the model. 

The above issues were addressed in [9] : a high-resolution 

patio-temporal reconstruction of the non-linear dynamics of 

n abdominal organ motion was introduced for designing a 

ontinuous-time dynamics that allowed us to infer inter-frame de- 

ormations. Promising results were obtained, showing the bladder 

n its 3D complexity during deformation due to strain conditions 

ith an estimation of the most deformed tissue areas. However, 

ladder motions were quantified based on the temporal changes 

n Jacobian determinant of the estimated deformation fields. Al- 

hough this parameter can quantify the organ volume changes, it 

ails to identify its local morphological changes throughout mo- 

ion. Since we are interested in comparing differences in geome- 

ry (rather than in size), these high-resolution temporal data were 

hen employed to introduce a compact characterization of moving 

ladder surfaces through the use of a geodesic-based shape de- 

criptor in [10] . In this paper, we have extended the study group to 

nclude more subjects and we have proposed a technique to sim- 

late pathological data sequence. Moreover, more results for com- 

aring between shape descriptors and individual motion patterns 

ere provided to show how the use of such methods is intended 

o ultimately inform clinical practice and research. 

In [37] , a characterization of pelvic organ dynamics was pro- 

osed using diffeomorphic registration on dynamic 2D slices. The 

bjective of the present study is to go towards 3D dense velocity 

easurements to fully cover the entire surface. Furthermore, most 

f the descriptors used in [37] were based on Euclidean geometry 

 i.e. the geometry of a flat space). Proposing new shape descriptors 

hich generalize Euclidean geometry to non-flat or curved spaces 

ventually becomes necessary with the increase in the number and 

omplexity of motion patterns to be recognized. 

. Methods 

.1. Dynamic quadrilateral mesh 

.1.1. Surface parameterization 

In a first step, we have extracted an initial control mesh from 

he reconstructed bladder volumes ( i.e. 3D binary masks obtained 

sing the methods introduced in [9] ) at the first time frame us- 

ng the marching cubes algorithm [38] . The simplicial surface is 

hen converted to a quasi-regular quadrilateral mesh (K, M ) such 

hat M = { x 1 , x 2 , . . . x n } , x i ∈ R 

3 is the set of vertex positions, and

is a cubical complex determining the topological type of the 

esh by specifying the connectivity of vertices, faces, and edges. 

o fully cover the entire surface with an extremely low number of 
3 
eaningful variables, we have used a robust algorithm presented 

n [39] , providing a uniform distribution of vertices over the man- 

fold by iteratively refining the initial control mesh until a pure 

uad mesh is obtained. This algorithm avoids irregularity problems 

t the shape poles, such as vertex singularities encountered in [7] . 

ig. 1 illustrates the quality of an obtained quadrilateral mesh. 

.1.2. Estimation of smooth vertex trajectories 

In a second step, we propose to track the mesh vertices dur- 

ng respiratory motion while preserving their connectivities. This 

llows for constructing a spatio-temporal structured meshes which 

ight also be used for deriving some biomechanical properties of 

he organ dynamics such as strains and stresses using finite ele- 

ent methods which are required for establishing biomechanical 

odels ( i.e. pure quad meshes are often desired in CAD applica- 

ions). 

Our model for shape analysis focus on deformations repre- 

ented by diffeomorphisms acting on landmarks. To determine 

oint correspondences, a mesh-to-volume registration is per- 

ormed. In other words, we propose to track the set of mesh 

ertices using the LDDMM framework that has been heuristically 

hown to produce natural deformation paths in the space of dif- 

eomorphisms without having to use point-to-point correspon- 

ences between source and target point sets [40] . A smooth and 

ontinuous-time trajectory of each vertex is estimated throughout 

he organ range of motion (vertices travel along geodesic curves). 

The principle of control-points-based LDDMM for estimating a 

iffeomorphic mapping is as follows: 

Given a set of N control points { q i } i ∈ 1 , ... ,N , and a set of N corre-

ponding momentum vectors of R 

3 { μi } i ∈ 1 , ... ,N , the velocity vector 

n the tangent space T x M of the parametric surface M at a point

 ∈ M , is obtained through the use of a Gaussian convolution filter: 

 : x ∈ M �→ v (x ) = 

N ∑ 

i =1 

K(x, q i ) .μi (1)

here K(x i , x j ) = exp (−|| x i − x j || 2 /σ 2 ) is a Gaussian kernel to en-

ure smooth geodesic shooting. 

The temporal evolution of the organ velocity vector field can be 

odeled by the following Hamilton’s equations of motion: 

 ̇

 q (s ) = K(q (s ) , q (s )) .μ(s ) ˙ μ(t) 

= −1 

2 

∇ q { K(q (s ) , q (s )) · μ(s ) � μ(s ) } (2) 

The solutions to this Hamiltonian are then the same as the 

eodesics on a Riemannian manifold. The numerical integration of 

hese PDEs, performed using a second-order Runge-Kutta scheme, 

ives a flow of a time-dependent velocity vector field parameter- 

zed with q (s ) and μ(s ) : 

 : x ∈ R 

3 × s ∈ [0 , 1] �→ v (x, s ) = 

N ∑ 

i =1 

K(x, q i (s )) .μi (s ) (3)
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Fig. 2. Example of 4D reconstructed quad mesh for the bladder during forced respiratory motion. 
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The temporal displacement of each tracked point x ∈ M is gov- 

rned by the following autonomous first order ODE: 

˙ 
 (s ) = v (x (s ) , s ) sub ject to x (0) = x (4)

Finally, the solution of this ODE yields a flow of diffeomor- 

hisms starting from the source points (i.e. starting from the iden- 

ity in the space of transformations), �q,μ(., s ) : R 

3 × [0 , 1] �→ R 

3 ,

uch that �q,μ(., 1) = Id + 

∫ 1 
0 v (�q,μ(., s )) ds is the end-point of

he geodesic flow matching the given point sets. 

The overall algorithm for vertex tracking is described in 

lgorithm 1 , with the following notations: L is the length of the 

lgorithm 1 LDDMM-based 4D quad mesh generation 

• Inputs: - Initial mesh structure (K, M 0 ) . 

- Reconstructed segmentation contours C t , t ∈{ 1 ... L −1 } 
• Motion estimation: Estimate forward successive vertex trajec- 

tories using the LDDMM {M t+1 } t = 0 , ... ,L −1 such that M t ⊂ C t , 
by aligning M t and C t+1 : 

– for t in 0 . . . L − 1 : 

1. Initialize { q t 
i 
(s ) } i ∈ 1 , ... ,N , and { μt 

i 
(s ) } i ∈ 1 , ... ,N .

2. Compute velocities v t according to Eq. 3. 3. Integrate 

the flow �t 
q,μ(x, s ) = Id 

R 3 
+ 

∫ 1 
0 v 

t (�q,μ(x, s )) ds, ∀ x ∈ M t , by

minimizing the cost function defined in Eq. 5. 
• Output: 4D quad mesh sequence (K, M t ) t = 0 , 1 , ... ,L −1 . 

ynamic sequence, M t gives the locations of mesh vertices at time 

, C t is the entire 3D surface point cloud at time t ( M t is a proper

ubset of C t ). Note that the registration problem is solved by itera- 

ively minimizing the following loss function: 

f (q, μ) = d(C t+1 , �q,μ(M t )) + R (q, μ) (5) 

here the first term measures data-attachment while the second 

egularization term represents the norm of the deformation. 

To validate the tracking process, we propose to compute the fol- 

owing error: 

 = 

1 

n 

n ∑ 

p=1 

dist(x p , C L −1 ) (6) 

here: n is the total number of tracked vertices, x p ∈ M L −1 , and

ist(x p , C L −1 ) is the Euclidian � 2 distance between x p and the clos-

st point x l in the last reconstructed surface C L −1 . A propagated 

ean error of 0 . 63 ± 0 . 06 mm was obtained across all subjects.

he resulting error was always inferior to 1 mm which reflects the 

racking accuracy level for a given isotropic voxel size of 1 × 1 × 1 

m. Fig. 2 shows the quality of our 3D+ t quadrilateral mesh recon- 

truction based on smoothly tracking vertices using the LDDMM 

hile keeping connectivity unchanged. 
4 
.2. Shape descriptors 

.2.1. Mesh elongation and distortion 

Shape elongations and distortions have been used in medical 

maging, in particular to characterize the deformations of pelvic or- 

ans in the plane from dynamical shape contour points [37] . How- 

ver, such characterizations are prone to biased interpretation of 

rgan motion patterns because of the out-of-plane problem. To 

vercome these limitations, we propose a 3D extension method 

f these 2D feature maps, compatible with the reconstructed quad 

eshes. 

esh elongation: 

The mesh elongation, equivalent to the Green-Lagrange de- 

ormation descriptor, is a commonly used feature in biome- 

hanics for characterizing local mesh deformations based 

n the spacing changes in the neighborhood of each ver- 

ex. Consider a vertex x 
j 
i 
(t) and its four nearest neighbors 

 x 
j 
i +1 

(t) , x j 
i −1 

(t ) , x j+1 
i 

(t ) , x j−1 
i 

(t ) } belonging to the mesh at

he t th time frame, and a vertex x 
j 
i 
(t + 1) and its neighbors

 x 
j 
i +1 

(t + 1) , x j 
i −1 

(t + 1) , x j+1 
i 

(t + 1) , x j−1 
i 

(t + 1) } , their homologous

ertices at the (t + 1) th time frame (where i and j are used for 

ndexing mesh local connectivities). We compute ˆ d (t) and 

ˆ d (t + 1) , 

he average Euclidean distance between x 
j 
i 
(t) and its neighbors 

resp. between x 
j 
i 
(t + 1) and its neighbors). Then, the elongation 

easure is given by: 

(k ) = 

ˆ d (t + 1) − ˆ d (t) 

2 ̂

 d ( t) 
(7) 

f E(t) = 0 , then no deformation has occurred, else if E(t) > 0 , the

eighborhood of the vertex has expanded. Otherwise, the neigh- 

orhood has shrunk. 

esh distortion: 

The dihedral angles are defined as the angles between the two 

ormal vectors to each two adjacent faces [41] . And the temporal 

hange in these angles during motion is considered as the tempo- 

al distortion of the quad mesh. 

For two adjacent quad faces F 1 = { x 1 , x 2 , x 3 , x 4 } and F 2 =
 x 1 , x 2 , x 

′ 
3 , x 

′ 
4 } , with normals N 1 and N 2 , respectively, the local di-

edral angle is computed as follows: 

= arccos 

(
N 1 · N 2 

|| N 1 || × || N 2 || 
)

(8) 

Assuming that the adjacent faces to each vertex of the initial 

uad mesh (at t = 0 ) were maintained the same throughout the 

equence, then both vertices x 
j 
i 
(t) and x 

j 
i 
(t + 1) have always the 

ame adjacent faces that we note { F 1 , F 2 , F 3 , F 4 } . If we consider θ (t)

nd θ (t + 1) as the maximal dihedral angles among the six pos- 

ible couple combinations of adjacent faces at times t and t + 1 , 



K. Makki, A. Bohi, A.C. Ogier et al. Computer Methods and Programs in Biomedicine 218 (2022) 106708 

r

t

D

t

3

s

s

k

m

o

o

n

j

b

t

a

m

a

l

f

m

i

l

p{

w

c

n

n

b

p

t

m

t

s

t

p

i

p

v

s

w

o

b

w

l

d

m

I

g

f

h

d

H

p

l

T

[

a

t

l

h

(

m

a

[

h  

d

b

o

s

i

s

t

I

o

i

c

w

t

t

t

t

r

b

t

w

a

s

m

t

fi

t

t

t

i

b

 

a

d

E

espectively, then, the temporal mesh distortion around x 
j 
i 

is de- 

ermined by: 

 (t) = | θ (t + 1) − θ (t) | (9) 

If D (t) = 0 , then no local deformation has occurred. Otherwise, 

he neighborhood has distorted. 

.2.2. A novel geodesic-based feature for characterization of organ 

urfaces: 

In the field of computer graphics and computational geometry, 

hortest path problem on both flat and curved domains is a well- 

nown problem. Several techniques have been proposed for esti- 

ating shortest path lengths, also known as geodesic distances, 

n curved domains. One of the most popular computational meth- 

ds is the Dijkstra algorithm for finding the shortest paths between 

odes in a weighted graph [42] . However, this algorithm computes 

ust a rough approximation of the true distances. Its major draw- 

ack is that the direction along which distance increases is par- 

ially ignored since only horizontal and vertical displacements are 

llowed on the grid. Then, it becomes clear, for instance, that this 

ethod will overestimate the straight-line Euclidean distance of 

ny diagonal path crossing a regular grid. To circumvent this prob- 

em, Sethian introduced the fast marching algorithm which is a 

ar reaching generalization of the Dijkstra algorithm [43] . The fast 

arching algorithm computes the geodesic distance (in the viscos- 

ty sense) in O (n. log (n )) operation. Equivalently it solves the fol- 

owing boundary value problem (BVP) of the Eikonal PDE by front 

ropagation: 

|∇L (x ) | = 1 , x ∈ �, 

L (∂�) = 0 , 
(10) 

here � is an open set of R 

n with well-behaved boundary, n = 

ard(�) , and L stands for the distance or length. However, being 

onlinear (hyperbolic), the Eikonal PDE is just simple to state but 

ot at all easy to solve, in particular for two-point BVPs which will 

e the case in the present work. Subsequently, Crane et al. pro- 

osed the heat method for geodesic distance computation [44] . In 

he heat method, the shortest path problem is reformulated in a 

ore elegant way by transforming it into two simpler linear ellip- 

ic problems, thus allowing the main problem to be solved in three 

teps: 

• Integrate the heat flow for a source point across the grid/mesh 

(problem 1). 
• Compute the normalized gradient for the heat (a simple change 

of variable). 
• Recover the true distance from the normalized gradient by solv- 

ing a Poisson equation (problem 2). 

In this paper, we first propose to point out the relation between 

he heat method and an Eulerian PDE approach, that has been pro- 

osed in [45] for estimating tissue thickness between two non- 

ntersecting boundaries, which in its turn, decomposes the shortest 

ath problem into two elliptic problems using the same change of 

ariable in-betweens. Then, we combine them to derive a robust 

hape descriptor which is purely based on geodesic distances and 

hich will enable us to quantify the non-linear deformations of 

rgan surface with respect to the sphere. The latter technique has 

een tremendously used for tissue thickness estimation [45–47] , 

hile, surprisingly enough, it has been used only for this particu- 

ar problem, regardless of its potential to provide accurate geodesic 

istance maps in a more general setting since it can also handle 

ultiple segment domains with appropriate boundary conditions. 

n short, the present work describes its potential to estimate the 

eodesic distance maps related to the mapping of a smooth sur- 

ace into a sphere. In the following, we will explain in more detail 
5 
ow geodesic distance maps are estimated and then employed to 

erive our shape descriptor. 

eat flow integration: 

First of all, let us introduce the heat transfer problem and em- 

hasize the effect of the imposed boundary conditions on the so- 

ution. Consider the basic form of the heat equation: 

∂h (x, t) 

∂t 
= �h (x, t) . (11) 

Consider the following initial value problem: 

∂h (x, t) 

∂t 
= �h (x, t) s.t h (∂�) = 1 . (12) 

he time-dependant solution of the above stated BVP is used in 

48] to approximate the heat diffusion from a single source ∂� on 

 smooth manifold to all other points of the manifold. In practice, 

he heat method approximates solution to this particular prob- 

em from the heat kernel, namely the Green’s function for the 

eat equation, in the limit, where dissipation time approaches zero 

a relation between heat and distance known as Varadhan’s for- 

ula [49] ). For more details we refer to [50] and [51] . 

Consider now the 2-point BVP such that the solution we 

re looking for, satisfies the heat equation inside a region � = 

 ∂ 0 �, ∂ 1 �] ⊂ R 

n and takes prescribed values at the boundaries: 

 (∂ 0 �, t) = a (t ) , h (∂ 1 �, t ) = b(t) . (13)

Then, according to the Eq. (11) , we expect the temperature 

istribution h to change with time. However, if a (t) and b(t) are 

oth time-independent ( i.e. if they are constant over time), then 

ne might expect the solution to eventually reach a steady-state 

olution after a certain amount of time ( i.e. limits for t approach- 

ng infinity) [52] . Therefore, ∂h 
∂t 

→ 0 and the heat equation can be 

afely reduced to the Laplace equation, �h = 0 inside �. 

In classical physics, Laplace’s equation arises in the descrip- 

ion of all kinds of conservative physical systems in equilibrium. 

n the field of study of Laplace’s equation, namely potential the- 

ry, a potential is a scalar function whose gradient vector field 

s divergence- and curl-free. The gradient is then said to be a 

onservative vector field. Since the principle remains the same if 

e replace the electric potential with temperature, we propose 

o determine the temperature distribution under the condition of 

he thermal equilibrium. The solution h is a smooth scalar func- 

ion whose gradient describes in which direction and at what rate 

he temperature, or equivalently, the distance increases the most 

apidly around a particular location. For instance, this solution has 

een directly employed as an approximation for the scalar dis- 

ance function on a surface in [53] . Such an assumption can be 

ell argued for approximating distance maps in-between two par- 

llel plates. However, as soon as one of the two boundaries is 

lightly deformed, the restrictive unit length condition will be re- 

oved from the corresponding gradient vector field. To surmount 

his issue, and following the principle of the heat method, we will 

rst normalize the gradient vector field of h and then recover the 

rue distance function from the resulting unit-length gradient vec- 

or field. 

From another point of view, solving Laplace’s equation subject 

o appropriate Dirichlet boundary conditions, is equivalent to solv- 

ng the variational problem of finding a function h that satisfies the 

oundary conditions and has minimal Dirichlet energy. 

Definition Let � be an open subset of R 

n . And let h : � → R be

 C 2 function over �, the gradient’s scalar Dirichlet energy of h is 

efined by the following positive real number: 

[ h ] = 

1 

2 

∫ 
||∇h (x )) || 2 dx (14) 
x ∈ �
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here ∇h : � → R 

n denotes the gradient vector field of h . Fur-

her details, from a Riemannian point of view, are provided in the 

ppendix A . 

ell-posedness of the 2-point boundary value problem: 

Before defining the BVP to be solved in this work, we shall 

ive a remark that a solution to Laplace’s equation is uniquely 

etermined if appropriate boundary conditions are posed. More 

enerally, a BVP can be solvable if and only if the problem is 

ell posed. In particular, the previously defined Dirichlet prob- 

em can be solvable, if and only if the boundaries are smooth 

urves/surfaces [54,55] . 

To initialize the workflow, the binary mask of the shape is 

roded with a cross-shaped structuring element which is best 

uited for fine structures. The choice of the structuring element 

s of great importance in preserving, as much as possible, the ge- 

metry and topology of any arbitrary shape. The objective here is 

o deal with sharp peaks particularly. In the following, we denote 

he eroded mask by S e . Then, we perform the Principal Compo- 

ent Analysis (PCA) on S (viewed as a point cloud where each 

oxel is considered as a point). The eigenvector corresponding to 

he largest eigenvalue gives the axis called the principal axis of In- 

rtia. This axis intersects the shape surface at two points p 1 and 

p 2 (called the shape poles). To ensure that the bounding sphere 

ill sufficiently enclose the shape and, thus, to prevent bound- 

ries from overlapping, we use a surrounding sphere S s of radius 

 = 0 . 8 ∗ l and whose center coincides with the shape centroid, 

here l is the usual Euclidean length of the segment [ p 1 , p 2 ] . To

etermine the shape/sphere centroid, we use the median point 

hich is a better midpoint measure for cases where a small num- 

er of outliers could drastically skew the average. 

At this level, all the shape surface points will be located be- 

ween two non-intersecting boundaries: ∂ 0 � = S̄ s , and ∂ 1 � = S e , 

here S̄ s denotes the region outside the sphere. 

In practice, we are looking for an elliptic twice-differentiable 

unction h : R 

3 → R which satisfies the Laplace’s PDE �h = 

 i v (grad (h )) = 0 inside the region � = ∂ 0 � ∪ ∂ 1 �, subject to the

irichlet boundary conditions h (∂ 1 �) = 1 and h (∂ 0 �) = 0 ( i.e. h is

he function that has minimal Dirichlet energy for all x ∈ �, also 

alled the harmonic interpolant in potential theory). The physical 

ntuition behind is to determine the equilibrium heat distribution 

n a perfectly symmetric spherical room since the divergence of 

he gradient vector field corresponds to some kind of fluid flow. 

mplicitly, the shape surface S can be approximated in function of 

he solution h , by the isosurface: 

 = { x ∈ � | h (x ) = c} , (15) 

here c is a constant in ]0,1[. Varying c continuously from 0 to 1 

ill give the disjoint isosurfaces of the distance function. It is also 

mportant to keep in mind that the major problem in approximat- 

ng geodesic distance is that the latter fails to be smooth at points 

n the cut locus, i.e. points that are equidistant from at least two 

oints on a boundary. Fortunately, however, since the organ sur- 

ace is smooth enough, then cut locus issues are avoided and the 

moothness of the solution would not affect the geometry of the 

sosurfaces of the distance function. 

umerical integration: 

To approximate the numerical solution of Laplace’s equation, 

e use the Jacobi iterative relaxation method which is simple to 

mplement and which allows fast approximation of the solution in 

artesian coordinates: 

 t+1 (i, j, k ) = 

1 

2(�i 2 � j 2 + �i 2 �k 2 + � j 2 �k 2 ) 
6 
×(� j 2 �k 2 [ h t (i + �i, j, k ) + h t (i − �i, j, k )] 

+�i 2 �k 2 [ h t (i, j + � j, k ) + h t (i, j − � j, k )] 

+�i 2 � j 2 [ h t (i, j, k + �k ) + h t (i, j, k − �k )]) (16) 

here t is the iteration index. In this work, we process recon- 

tructed data with an isotropic voxel spacing of 1 × 1 × 1 mm ( i.e. 

i = � j = �k = 1 ). 

onvergence criterion: 

The scalar function h ∈ L 2 (�) is initialized to 0 inside � and 

hen iteratively relaxed by finite differences until a satisfactory 

eat steady state solution is reached. A parallel computational im- 

lementation is performed in such a way that all grid points inside 

are simultaneously visited at each iteration. A convergence cri- 

erion can be defined, through a discretization of the eq (14) , by 

he following expression based on the total field energy over �: 

t = 

∑ 

�

√ 

( 
∇h 

i 
t 

2 

) 2 + ( 
∇h 

j 
t 

2 

) 2 + ( 
∇h 

k 
t 

2 

) 2 (17) 

here ∇h i t = h t (i + 1 , j, k ) − h t (i − 1 , j, k ) , ∇h 
j 
t = h t (i, j + 1 , k ) −

 t (i, j − 1 , k ) , and ∇h k t = h t (i, j, k + 1) − h t (i, j, k − 1) . The Jacobi it-

rative computational scheme of eq (16) converges when the ratio 

= 

εt −εt+1 
εt 

becomes smaller than a user-defined threshold (typ- 

cally about 10 −5 ). Intuitively, this aims at encouraging smooth 

calar fields by penalising large spatial gradients between neigh- 

ouring grid points. To speed up the algorithm, we strongly recom- 

end to keep the number of iterations as a user defined parame- 

er in order to avoid the repeated evaluation of ε at each iteration. 

 total number of 200 iterations is used for solving the Laplace’s 

quation in this work. 

omputing the unit-length normal vectors to the tangent planes to 

he harmonic layers: 

As argued before, the gradient of h is highly sensitive to errors 

n magnitude. We therefore compute the unit normal gradient field 

 = − ∇h 
‖ ∇h ‖ = (N i , N j , N k ) 

T , so that the magnitude can safely be ig-

ored when recovering distance maps from N in the next step. 

he Eikonal equation will then automatically be satisfied there- 

fter, without being solved directly. The same operation was re- 

erred to as a change of variable in the heat method (the second 

tep) [44] . Integrating this normal velocity vector field allows for a 

ijective mapping between pairs of points ( i.e a one-to-one map- 

ing). This gives a set of paths of minimum Dirichlet energy ( i.e. 

 geodesic flow) for mapping the shape to a sphere. Let us un- 

erline that N is also a conservative vector field (curl free) when 

valuated at each isosurface h = h iso . More details are provided in 

ppendix B . 

ecovering geodesic distance maps: 

This last step resembles the third and last step in the heat 

ethod which consists of computing true distance functions (po- 

ential scalar function L n ) whose gradient is parallel to N. We 

herefore find the closest scalar potential G = L 0 + L 1 by minimiz- 

ng 
∑ 1 

n =0 

∫ 
� | ∇L n − N | 2 , or equivalently, by solving the elliptic Pois- 

on equation ∇ · ∇L = ∇ · N, where (∇·) is the divergence opera- 

or, or even more simply, by aligning ∇L and N. 

In the discrete setting, a solution to the above stated prob- 

em can be determined by solving a couple of Euler-Lagrange 

DEs: ∇ L 0 .N = −∇ L 1 .N = 1 , subject to the boundary conditions

 (∂ �) = L (∂ �) = 0 . L and L are first initialized to 0.5 and
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Fig. 3. Proposed method (Stanford Bunny example): (a) binary mask and its eroded version, (b) harmonic map: heat values range from blue (0) to red ( 10 4 ), (c) length of 

the geodesic path from x to the surrounding sphere L 0 , (d) length of the geodesic path from x to the inner boundary L 1 , (e) length of the resulting geodesic path G (lengths 

are expressed in mm), and (f) feature values ˜ f between the two boundaries (in mm 

−1 ). 
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hen iteratively updated inside � using a symmetric relaxation 

auss-Seidel method: 

L t+1 
0 

[ i, j, k ] 

α
= 1 + | N i | L t 0 [ i ∓ 1 , j, k ] + 

∣∣N j 

∣∣L t 0 [ i, j ∓ 1 , k ] 

+ | N k | L t 0 [ i, j, k ∓ 1] (18) 

L t+1 
1 

[ i, j, k ] 

α
= 1 + | N i | L t 1 [ i ± 1 , j, k ] + 

∣∣N j 

∣∣L t 1 [ i, j ± 1 , k ] 

+ | N k | L t 1 [ i, j, k ± 1] (19) 

here: 

{
m ± 1 = m + sgn (N m 

) , m ∓ 1 = m − sgn (N m 

) 

f or m ∈ { i, j, k } , and α = 

1 

| N i | + | N j | + | N k | 
, with: 

gn (. ) is the sign function, L 0 (x ) is the length of the optimal

eodesic path from the point x = (i, j, k ) to ∂ 0 �, while L 1 (x ) is

he length of the optimal geodesic path from x to ∂ 1 �. The sum

f these two lengths G (x ) = L 0 (x ) + L 1 (x ) , defined as thickness

n [45] , represents in fact the length of the optimal geodesic 

ath from ∂ 0 � to ∂ 1 � that passes through x . These geometric 

ethods which are fully non-parametric allow one to handle time 

erivatives with finite differences in a restricted physical domain 

hat exhibit large deformations.This step is also parallelized by 

imultaneously visiting all voxels inside � at each iteration. 

roposed feature for surface characterization: 

Finally, we define a flexible feature by the following applica- 

ion: 

˜ f : � → R 

∗
+ (20) 

x �→ 

R 

G (x ) 
(20) 

Note that L 0 >> L 1 for all the surface points so that G � L 0 and

nly one PDE has to be solved to calculate the feature function 

see Fig. 3 .c, 3 .e). The function 

˜ f has the potential to characterize 
7 
he surface variation and to delineate between concave, convex and 

at regions as illustrated in Fig 4 for both torus and ellipsoid. Rela- 

ively, the largest feature values correspond to the most convex ar- 

as in the surface while the smallest values correspond to the most 

oncave areas. The proposed feature values exhibit smooth transi- 

ions between concave and convex regions. Furthermore, this fea- 

ure is scale-invariant thanks to the use of variable sphere radius, 

otation-invariant thanks to spherical symmetry, and also invariant 

o translation since the sphere and shape are concentric. An illus- 

ration of all the previous steps is presented in Fig. 3 . Fig 4 illus-

rates the obtained feature maps for a set of symmetric and non- 

ymmetric geometries. 

The ability to quantify organ shape changes with respect to 

he sphere would not only allow for deeper understanding of or- 

an motion but also conceivably allow for improved detection of 

athologies. In practice, many pathologies are associated with lo- 

alized organ malformations. Fig. 5 provides evidence that the pro- 

osed feature is capable of discriminating such phenomena. More- 

ver, assuming that the organ volume should be preserved during 

otion, we suppose that the sphere radius should remain constant 

hich is a sufficient condition to detect all local changes without 

ny small scale effect. Therefore, the feature values, being inversely 

roportional to a distance measure, can be expressed in mm 

−1 . 

. Experiments and Results 

.1. Data set 

.1.1. Realistic dynamic MRI data 

Pelvis areas of seven healthy participants (five women), rang- 

ng in age from 23 to 31 years, and in weight from 58 to 81, were

maged. Subjects were imaged with a 1.5T MRI scanner (MAGNE- 

OM Avanto, Siemens AG, Healthcare Sector, Erlangen, Germany) 

sing a spine/phased array coil combination and T 1 /T 2 weighted 

alanced steady-state free precession sequences ( T 1 /T 2 W bSSFP). A 

uasi-isotropic 3D static image was recorded during a maximum 
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Fig. 4. Obtained feature maps (normalized) for synthetic and realistic ( e.g. neonatal brain and bladder) surfaces. Colormap goes from blue (0) to red (1). 

Fig. 5. Capacity to detect local changes in surface geometry: first row (after normalization), second row (without normalization and with a commun truncated colorbar). 

Feature maps are plotted on the extracted isosurface h = 0 . 98 . 
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xpiration apnea of 18 seconds. Multi-planar dynamic acquisition 

ssuring full coverage of the pelvic region was recorded during 

 80 s forced breathing exercise. During this exercise, the sub- 

ect alternately inspired and expired at maximum capacity. Sub- 

ects were also instructed to increase pelvic pressure at the max- 

mum inspiration and then to contract abdominal muscles during 

he expiration. These actions increased the intra-abdominal pres- 

ure, causing deformations of the pelvic organs. Spatial configura- 

ion of the multi-planar acquisition is described in detail in [9] . 

he study was approved by the local human research committee 

nd was conducted in conformity with the Declaration of Helsinki. 

ince no extraneous liquids was injected into pelvic cavities in this 

tudy, only the segmentation of the bladder was performed and 

he analysis focused exclusively on this organ. For each subject, 

he three-dimensional dynamic sequences acquired in multi-planar 
o

8 
onfigurations allowed the reconstruction of nearly 400 bladder 

olumes generated at a rate of 8 volumes per second. Bladder vol- 

me of each subject was computed from the manual segmentation 

f the static acquisition. Bladder volume presented a large variabil- 

ty among subjects (values were ranged from 48 cm 

3 to 403 cm 

3 ). 

ince the scanning duration is short relative to the organ motion, 

patio-temporal reconstructions were performed outside the MR 

canner to recover the missing data using diffeomorphic registra- 

ion as detailed in [9] . 

.1.2. Data simulation 

To evaluate the capability of each geometric descriptor in de- 

ecting abnormalities in bladder dynamics during breathing ex- 

rcises, we have simulated a smooth continuous-time trajectory 

f the organ volume using a Log Euclidean Polyaffine registration 
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Fig. 6. Simulation of large nonlinear deformations using the LEPF: the green mask corresponds to the bladder segmentation at the resting state, the white segmentations 

correspond to the temporal organ positions, while the red dotted area shows the regional bladder motion abnormality (the resulting bulge through the vaginal canal). 
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ramework [36] to excite the organ deformation from the interior 

ith locally controlled properties. The organ volume in the static 

can is divided into four non-intersecting regions and an affine 

ransformation is associated to each region or component (we have 

nly used component-wise scaling transforms in such a way that 

he organ volume is still preserved throughout the sequence). A 

rst motion cycle is simulated by estimating a flow of invertible 

iffeomorphisms for mapping the organ volume from resting state 

i.e. organ volume in the stationary scan) towards the maximum 

f inspiration state exhibiting the largest deformation. A forward 

rajectory was estimated based on the integration of stationary ve- 

ocity fields via the exponential map . Then, the inverse trajectory 

or coming back to the resting state was obtained by smoothly in- 

erpolating the inverse of the simulated polyaffine transformations. 

inally, this motion cycle is repeated 8 times for stability assess- 

ent of different measures. 

In practice, we simulated a large deformation to make the or- 

an fall down by maximum of inspiration which allow the floor of 

he bladder to sag through the muscle and ligament layers. This 

bnormal kind of motion occurs frequently in women with uterine 

nd bladder prolapse for which the bladder can create a bulge into 

he vagina because of the weakness of their pelvic muscles and lig- 

ments. Fig. 6 illustrates the simulated organ trajectory which we 

ill call Simulated Pathology (SP) in the sequel. This sequence, for 

hich the shape trajectory is well known, will serve to compare 

he different features used in this study in terms of stability and 

easure repeatability during forward organ movement. It will also 

erve to assess their capacity to detect this abnormal motion type 

n a mixed data set. 

.2. Tracking of mesh vertices 

Diffeomorphic registrations were performed using the software 

ackage Deformetrica [56] . The parameters of the registration al- 

orithm were set as follows: the standard deviation of the Gaus- 

ian kernel defined in (1) was set to σ = 10 −4 in order to obtain

 deformation field with a narrow precision. The kernel-width pa- 

ameter for controlling the granularity of the deformation was set 

o 8. 15 intermediate states describing the temporal evolution of 
9 
he tracked points were estimated in order to obtain a smooth 

ontinuous-time trajectory of the organ between successive time 

rames. The loss function defined in (5) was minimized using the 

radient descent optimization method. All experiments were per- 

ormed on an Intel® Xeon® Processor Silver 4214 CPU @ 2.20GHz, 

ith a physical memory of 96GB. For the first subject for example, 

lgorithm 1 took 6 sec to align a set of 342 tracked point set M t ,

ith the target set C t , composed of 5686 points for which only a 

et of 210 control points have been used for optimizing the shape 

atching. 

.3. Geometric descriptors 

In this study, we have used different shape descriptors that can 

e classified into two categories: 

• Biomechanical descriptors: the deformations were quantified 

using mesh temporal elongations and distortions. This aimed to 

extend the methodologies used in [37] from 2D+ t to 3D+ t . 
• Geometric descriptors (family of geodesic-based features): the 

mean curvature and the new proposed descriptor which take 

into account the non Euclidean geometry of three dimensional 

shape space. 

A comparison between descriptors was performed where the 

oal was to assess their robustness by performing trajectory sta- 

ility and sensitivity analysis. In fact, the propagated tracking- 

rrors may affect the mesh regularity in the neighbourhood of 

ome slightly perturbed vertices. Such small errors can be from 

ny source. For instance, they may have originated from veloc- 

ty smoothing within the LDDMM, which can also be mixed with 

ound-off errors propagated in the numerical integration of dif- 

erential equations when computing the features themselves. As- 

uming that the effect of error propagation increases with time, 

eighbourhood-based features may thus be more or less sensitive 

o these cumulative errors. To evaluate the robustness of each de- 

criptor with respect to error propagation, we computed the fol- 

owing error ratio that is indicated in Fig. 7 : 

 = 1 − normcorr (F r (0) , F r (t max ) ) (21) 
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Fig. 7. Feature map dynamics (changes) w.r.t the resting state for the synthetic sequence. Elongations and distortions showed the largest sensitivity rate to tracking-error 

propagation: E = 4 . 5% . Results show up to 99% correlation (similarity rate) between feature maps at first and last (9th) resting states for our descriptor, more than 3% 

better than those of other descriptors. For (a), (b) and (d), colorbars range from blue (no deformation) to red (high deformation). For (c), the green color indicates that no 

deformation has occured. 
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here normcorr(., . ) is the normalized correlation function, F r (0) 

s the reference feature map, and F r (t max ) is the obtained feature 

ap at the last time the resting state is revisited. 

Error estimates for the characterization of simulated organ 

hape trajectory were: 0.045 for mesh elongations and distortions, 

.034 for Riemannian mean curvature, and 3 . 10 −6 for the proposed 

eature. 

Fig. 7 shows different feature map dynamics across time for 

he simulated sequence. The top meshes represent the shape 

t each revisited resting state. Using the geodesic-based feature 

or which the computations were totally independent of vertex 

eighbourhood characteristics, the feature map differences were 

ery close to zero over all the surface but we can observe the 

resence of small feature changes arising around some vertices, 
10 
aused mainly by propagation of neglectable registration errors. 

his means that this feature is capable of detecting these pertur- 

ations as well as providing correct correspondence trajectories 

n a bijective fashion. Moreover, the use of the proposed feature 

xhibited a perfect correlation curve repeatedly showing a cor- 

elation value which is very close to 1 at each revisited resting 

tate. 

To evaluate descriptors in terms of their capacity to detect mo- 

ion abnormality, we have defined the deformation depth parame- 

er by Depth = 1 − min cor r , where mincor r is the minimal correla-

ion value achieved at maximum of inspiration (see Fig. 7 ). The ob- 

ained deformation depths were: 0.12 for mesh elongations, 0.115 

or mesh distortions, 0.17 for Riemann mean curvature, and 0.36 

or the proposed feature. Since we have simulated a large deforma- 
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Fig. 8. Feature map dynamics (changes) w.r.t the resting state for one realistic organ shape trajectory. As shown in (a) and (b), a fine characterization of organ shape trajectory 

using geodesic-based features can allow for approximating the respiratory frequency, f r ≈ 1 
T 

, where T is the median time interval between two successive maximums of the 

correlation curve. For (a), (b), and (d), colorbars range from blue (no deformation) to red (high deformation). For (c), the green color indicates that no deformation has 

occured. 
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S

ion in a specific direction (see Section 4.1.2 ), it would be expected 

hat the corresponding correlation trajectory will exhibit an impor- 

ant deformation depth. Which was the case using our descriptor, 

n a more remarkable way. 

On the other hand, sensitivity assessment consisted of testing 

he robustness of feature-based statistical characterizations in the 

resence of some uncertainties related to the data acquisitions. For 

xample, respiratory depth and rythm may vary slightly over time 

nd cannot be totally controlled during MR scanning. Therefore, 

e cannot assure that the resting state will reappear somewhere 

lse in the sequence while preserving exactly the same initial or- 

an shape patterns. To compare between descriptors in this con- 

ext, we used a realistic organ trajectory, for which explicit error 

odels are not known. 

Fig. 8 shows that the correlation curve associated to the pro- 

osed feature is characterized by greater spatio-temporal stability 

han those produced by employing each of the other descriptors 

or characterizing one realistic organ shape trajectory. These exper- 

ments show also that mesh elongations are very sensitive to noise 

nd tracking-error propagation which makes it difficult to quan- 

ify breathing frequency. It is also clear that the stability of distor- 

ion measures decreases significantly with time. This confirms the 

ssumption mentioned above and also confirms the fact that the 
11 
eodesic-based features are more capable of describing respiratory 

requency and depth. 

.4. Subject-specific organ dynamics 

Results presented in Fig 9 illustrate the organ motion patterns 

or all subjects using the proposed descriptor. For each motion cy- 

le, a decrease in correlation coefficients reflects changes in surface 

eometry, relative to the reference state. This can be interpreted 

y the fact that forced inspiration involves an action of the di- 

phragm and abdominal muscles which induces deformation of the 

nternal organs. Otherwise, when the correlation values increase, 

he patient releases the pressure and consequently the bladder re- 

axes and returns to its initial shape. Respiratory motions were ex- 

ected to be perfectly regular during scanning. However, depth and 

hythm may vary over time. The patient’s breathing patterns then 

ecomes irregular with time which can be noticed from the corre- 

ation trajectories. For all healthy subjects, the organ was highly 

eformed by maximum of inspiration and the deformations oc- 

ured essentially in the top lateral regions. In terms of motion pat- 

erns, the organ shape at the maximum of expiration state was 

ery close to the shape at resting state, especially for subjects S 1 , 

 , and S (see top meshes in each subfigure). Clearly, the resting 
4 5 
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Fig. 9. Characterization of the different loading phases of the bladder using the proposed feature. Each subfigure corresponds to one subject. For each subject, we show 

the cyclical behavior in surface motion patterns: at maximum of expiration states (top meshes), and at maximum of inspiration states (buttom meshes). Colormaps depict 

feature changes in mm 

−1 and range from blue (no deformation) to red (high deformation). 

12 
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Fig. 10. Inter-subject comparison: normalized distance matrices between maximal temporal deformations (i.e. deformation depths). The left panel depicts the results for the 

volunteer-only comparisons. The right panel shows the comparisons after introducing the artificial sequence into the mix. 
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tate has never been revisited throughout the organ shape trajec- 

ory for the other subjects. This can explain the reduction in cor- 

elation across cycles. 

.5. Inter-subject variability in motion patterns 

In addition to the organ shape inter-variability, depth and 

hythm of respiration may vary across subjects. Depending on 

ndividual lung functions and capacities, healthy individuals ex- 

ibit different motion patterns and thus different bladder volume 

hanges. In this work, inter-subject comparisons were performed 

n two ways: i) a global metric is achieved using the organ defor- 

ation depth which reflects the respiratory depth ( section 4.5.1 ). 

nd ii) a more fine comparison is performed by establishing point- 

o-point anatomical correspondences to compute inter-correlations 

y means of topological characteristics ( section 4.5.2 ). 

.5.1. Maximal-deformation based comparison 

Fig 10 depicts the normalized distance matrices based on the 

bsolute differences of deformation depths between each pair of 

ubjects. We have introduced the simulated sequence into the data 

et for comparing between two different classes of motion, i.e. 

ormal and abnormal. The objective of these experiments is then 

wo-fold: 1) to show how deformation depths vary across healthy 

ubjects, depending on their individual breathing capacities (left 

anel), 2) to evaluate the capacity of each descriptor to filter out 

he introduced artificial data from the mix, and thus to recognize 

ny kind of abnormal motion, such as the pathological motion type 

escribed in Section 4.1.2 (right panel). As illustrated in the fig- 

re, the artificial sequence was poorly correlated with the realistic 

nes in terms of deformation depth. This difference was significant 

hen using the proposed feature and the Riemannian curvature 

hich makes them better suited as classifiers, but less significant 

hen using mesh distortions and elongations for the characteriza- 

ion of organ dynamics. These results are in line with those ob- 

ained in previous sections 4.3 and 4.4 . 

.5.2. Inter-subject comparison using the spherical parameterization 

Because of the large inter-variability between subjects in terms 

f organ volume and geometry, the organ surface parameteriza- 

ion differed across subjects (see Section 3.1 ). We then used the 
13 
igenfunctions of the LBO to find point correspondence between 

wo vertex sets in order to compare between different feature- 

ased characterizations. Each subject X , for which the organ sur- 

ace was encoded with n samples, was compared with each other 

ubject Y in the database with a unique parameterization (that of 

). We therefore adopted the spherical parameterization method 

ntroduced in [57] . This method considers only the three first non- 

rivial eigenfunctions of the LBO of the closed (genus −0 ) surfaces. 

owever, it is not guaranteed that the three first eigenfunctions 

ossess only two nodal domains which may lead to some irreg- 

lar situations such as singular vertices in sphere-mesh. To deal 

ith this problem, we followed [58] by taking into account the six 

rst eigenfunctions and then selecting among them the first three 

igenfunctions with only two nodal domains. Further details of the 

ethods are provided in the Appendix C . 

For the proposed geodesic-based feature, the spherical mapping 

as straightforward since we have the geometric flow that maps 

he mesh vertices to their corresponding vertices on a sphere sur- 

ace (see Appendices Appendix A and Appendix C for more de- 

ails), and only the surface resampling (i.e. the next step) was re- 

uired to compute inter-correlations between individuals’ motion 

atterns. 

The second step consisted of measuring similarities between 

ndividual’s motion patterns (i.e. between the individual time- 

verage feature vectors) using a temporal inter-subject compari- 

on (vertex-to-vertex) based on a spherical interpolation of vertices 

nd their corresponding texture values in the unit sphere using the 

dtree interpolation approach for surface resampling, included in 

he Spherical Demons framework [59] . 

Fig. 11 shows the quality of feature projections on the 

nit sphere for the simulated sequence. In clinical practice, 

uch projections will provide full 4D information using a com- 

on and simple shape representation to easily localize the 

ost important and common deformations at the population 

evel. 

Fig. 12 illustrates the complete pipeline for measuring the simi- 

arity between two surfaces with different resolutions based on the 

ormalized proposed feature. All the results of inter-subject com- 

arison using LBO spherical parameterization are given in Fig. 13 . 

hese results are consistent with those obtained using deformation 

epth as a global metric for inter-subject comparisons. They con- 



K. Makki, A. Bohi, A.C. Ogier et al. Computer Methods and Programs in Biomedicine 218 (2022) 106708 

Fig. 11. Feature projection on the sphere. For each panel, the first column represents the reference feature map, while the 2 nd and 3 rd columns represent the feature changes 

at maximal range of motion w.r.t the reference state (patterns of the highest simulated organ deformation). 

Fig. 12. The pipeline of the proposed framework of comparing two bladder surfaces with different parameterizations. This Figure summarizes the key steps leading to 

perform inter-subject comparisons. In this example, comparisons are based on the proposed feature. To complete this process, we resample the projected feature texture for 

”subject b” to fit the feature map projection for ”subject a” using a KdTree interpolation. 
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rm the ability of our descriptor to discriminate between normal 

nd abnormal motion. 

. Discussion and conclusion 

.1. Comparison with related works and their clinical relevance 

Actually, only 4D simulations (biomechanical models) of the 4D 

elvic organ motion are available in the literature [7,8] . This work 

epresents a research initiative that aims to assess the 4D motion 

f such organs from realistic observations using noninvasive imag- 
14 
ng techniques. Hence, the data reconstruction itself reveals clin- 

cally relevant insights into the understanding of pelvic floor dy- 

amics. Furthermore, there is a need for a consensus on the image 

cquisition protocols themselves [4] . And the results of the current 

ork will be used to adjust the current acquisition protocols for 

ynamic MRI sequences to make them more exploitable and well 

dapted for 3D reconstruction and post-processing. This study rep- 

esents an improved extension of the works of [37] from 2D+ t to 

D+ t for characterizing pelvic floor organ dynamics. In 2D+ t stud- 

es, the out of plane problem related to the acquisition protocols 

nd conditions can lead to incomplete or even misleading interpre- 
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Fig. 13. Inter-subject comparison using LBO spherical mapping with a Kdtree interpolation. Comparisons were based on the correlations between subjects’ motion patterns 

in a common shape space (the unit sphere): For each feature, the matrix elements were filled using the distance function dist( ̄F i , F̄ j ) = 1 − normcorr( ̄F i , F̄ j ) , where F̄ i is the 

resampled average map for distances between temporal feature vectors and the reference one, for subject S i , and normcorr is the normalized correlation function. 
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ations, which can prohibit their use in clinical settings. Moreover, 

his natural extension was required because of the variability of 

bdominal organ shapes across time and subjects. To address these 

ompeting concerns, statistical shape analyses were performed in 

he high resolution domain to allow quantification of the 4D mo- 

ion of the bladder. Given the fact that this extension has pointed 

ut that the bladder deformations occur essentially in top lateral 

egions, then it becomes obvious that this valuable information 

annot be directly extracted from dynamical sagittal slices. This 

akes it unnecessary to perform a direct comparison between the 

wo studies. 

In terms of methodologies and tools, the novelty in this work 

s that we characterize the organ dynamics only from surfacic in- 

ormation (i.e. using surface meshes) contrary to finite element 

odeling for stress analysis using volumetric meshes which also 

iscretize the interior structure of the organ [7,8] . Our fine char- 

cterization can be clinically useful to measure respirations indi- 

ectly through the deformation induced by their actions on blad- 

er shape: in addition to the assessment of respiration depth that 

an be deduced from the deformation depth parameter, Fig. 8 il- 

ustrates its use as a promising tool for identifying subject-specific 

espiratory frequencies by exploiting properties of periodicity in 

orrelation trajectories. 

.2. Surface representation and motion characterization 

In this study, we combine parametric methods (LDDMM, for 

urface representation) and non-parametric methods (an Eulerian 

DE approach, for surface characterization). The LDDMM was em- 

loyed to represent the organ surfaces as 4D smooth quadrilateral 
15 
eshes, empty from irregular situations such as singular vertices 

ear the organ shape poles, as encountered in [7] . The idea be- 

ind was to parameterize large deformations with only represen- 

ative samples of surface points encoding the major shape variabil- 

ty with reasonable computational costs within large datasets. The 

se of the LDDMM, employing Hamiltonian statistical mechanics, 

imed at providing an hypothesis compatible with the physics of 

eformations. This helped for establishing a compact shape repre- 

entation relying on structured meshes for the organ surface with 

xed connectivity information. A set of 3D geometric descriptors 

as employed to extract meaningful features characterizing the 

ladder shape dynamics during loading exercices. Elongations and 

istortions are a well known biomechanical parameters which have 

een used in [37] to classify subjects into pathological patients and 

ealthy control groups. However, since we would like to charac- 

erize the geometry of highly curved organs, then statistical tools 

erived from Euclidean geometry are not the most appropriate to 

eal with such clinical issues. In addition to the extension of elon- 

ations and distortions from 2D to 3D, we have also employed two 

hape descriptors involving the notion of geodesic distances for a 

ner characterization of organ dynamics: the mean curvature and 

ur proposed feature were used to identify salient motion patterns. 

To study the temporal changes in mean curvature, we have 

sed the method proposed in [60] , to estimate curvatures on 

riangle meshes. This required the conversion of temporal quad 

eshes to triangular ones and the major limitation was the de- 

endency of the algorithm on mesh resolution and vertex neigh- 

orhood size (this algorithm is well adapted to high-resolution 

eshes). To cope with this dependency, we proposed the use of 

 fully non-parametric Eulerian PDE approach to explore the space 
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f continuous maps from shape surface into a surrounding sphere 

urface. 

To analyze descriptors’ performances, we have deformed the 

ladder volume in the static MRI scan for one subject to simulate 

 biologically plausible model of abnormal shape trajectory using 

he LEPF (this aimed to locally control the deformation kinemat- 

cs, while providing globally nonlinear deformation). The results 

f our experiments on several descriptors show the effectiveness 

f the proposed shape descriptor to characterize surface dynamics 

hrough its application to this cyclic trajectory, characterized by its 

arge deformation-depth and long-term time variations (see Fig 7 ). 

Both these results on synthetic data and the results illustrated 

n Fig 8 for characterization of a realistic organ shape trajectory 

how that the numerical stability of elongation and distortion mea- 

ures decreases drastically across cycles. These examples also show 

hat the proposed feature is numerically much more stable than 

ensor-based mean curvature which confirms the findings of Nava- 

azdani et al. [32] that computing tensors impacts numerical sta- 

ility in time-dependent shape data analysis. In fact, mean cur- 

ature is an extrinsic measure of curvature which corresponds to 

ayman’s understanding of curvature before we were ever intro- 

uced to differential geometry. It is often employed in the Level 

et method for curvature-driven segmentation tasks [61] . Its ex- 

ression for non-parametric surfaces is also known as the diver- 

ence formula [62] . In [63] , Albin et al. showed that curvature esti-

ates from implicit surfaces (for which the computations are per- 

ormed in Cartesian coordinates) are more accurate than those cal- 

ulated from meshes. This can explain the fact that non-parametric 

ethods are more accurate and stable than parametric ones. In the 

ame context, we have studied the sensitivity of parametric meth- 

ds to mesh quality for estimating brain curvature tensor in [64] . 

n appendix Appendix A , we show that the non-parametric ap- 

roaches can successfully avoid the need to compute metric ten- 

ors explicitly while taking into account the non-Euclidean geom- 

try of organ curved surfaces. 

On the other hand, comparisons between two or more patients 

ay help identify movement abnormalities and may serve for sub- 

ect classification: into healthy and pathological, or into subgroups, 

haring similar organ motion characteristics within large data sets. 

An inter-individual comparison is then performed by introduc- 

ng the simulated sequence to the realistic dataset. A global met- 

ic is first achieved using the deformation depth. It reflects the 

aximum breathing capacity of each subject since the organ sur- 

ace deforms the most by maximum of inspiration. As illustrated 

n Fig. 10 , a quantification of subject-specific deformation depths 

uring deep breathing exercices is capable of determining differ- 

nces between patients (left panel) and groups (right panel). This 

ay serve to optimize both surgical and non-surgical treatments 

f pelvic floor disorders with respect to individual breathing ca- 

acities. To make this comparison more statistically meaningful, lo- 

al motion patterns derived from different descriptors and for dif- 

erent subjects (different parameterizations) were compared in a 

ommon space, the unit sphere, through the use of the LBO eigen- 

uctions for spherical mapping. Results in Figures 10 and 13 illus- 

rate the fact that motion patterns differ across healthy volunteers 

nd highlight the capacity of each descriptor to distinguish the 

imulated abnormal motion type from statistical measures. The re- 

ults show also that the geodesic-based features (including curva- 

ure), for which the simulated sequence was less correlated with 

ealistic ones, are the best classifiers against traditional classifiers 

ased on Euclidean geometry. In fact, each feature have described 

n organ shape trajectory by integrating over time all the avail- 

ble information from each frame. However, we observed that for 

 deformation characterization task, not all frames contain salient 

patio-temporal informations which are discriminative to different 

lasses of deformations. Indeed, many frames contain non-salient 
16 
otions which are irrelevant to the performed deformation. The 

haracterization of the simulated trajectory represents a good ex- 

mple to illustrate these findings ( Fig. 7 ). See also Fig. 8 , in which

esh distortions and elongations provided more ”non-salient” mo- 

ion patterns, thus affecting the quality of the corresponding cor- 

elation trajectories. 

.3. Limitations of the study and future scopes 

Although the fact that we propose a pipeline with minimal user 

ntervention, let us recall that it is not yet fully automatic, since 

t requires manual segmentation of the acquired dynamical slices 

sed for the reconstruction of organ volumes. Furthermore, it is 

equired to establish only the initial quad mesh for the organ sur- 

ace using Instant meshes. Concerning the proposed descriptor, we 

re considering only isotropic volumes for now. 

Future work will be towards addressing these limitations 

ith the help of deep learning approaches for slice segmenta- 

ion [65] , and to fully integrate the open source software of Instant 

eshes [39] in a way to make the entire pipeline easy to han- 

le for physicians and nurses. All the source codes developed and 

sed in this work are available at https://github.com/k16makki/ 

ynPelvis/tree/master/Dynpelvis3D . 

Future works will also include clinico-pathological data from 

ge-matched women with uterine and bladder prolapse. The pro- 

osed methods will be employed to identify morphological differ- 

nces between normal and pathological groups. These techniques 

ould also be applied to study and characterize the dynamics 

f other functional human tissues and organs such as the heart. 

hile it cannot be inferred from this study, it seems reasonable to 

ypothesize that the proposed tools can be employed to perform 

ongitudinal analysis during organ disease development or follow- 

ng a therapy for pelvic floor disorders. 
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ppendix A. Riemannian manifolds and geodesic flows 

In Section 3.2.2 , we have demonstrated the geodesic nature of 

he obtained geometric flows from a numerical point of view. In 

his Appendix, we will try to establish an analogy with the classical 

eodesic flows in differential geometry for parametric surfaces. 

First we shall give an overview of the mathematical background 

f geodesics on Riemannian manifolds with an aim to help further 

xplain the geodesic nature of the obtained curves and lengths. 

A 2-manifold is just a surface in three dimensional space. In 

ifferential geometry, manifolds are ”topological spaces” which lo- 

ally resemble Euclidean. (M , g) is a called Riemannian manifold 

quipped with a metric g if it is a differential manifold where the 

etric satisfies: 

 ∈ Sym 

2 
++ (T x M ) , ∀ x ∈ M (22) 

here Sym 

2 ++ is the group of symmetric positive definite bilinear 

orms defined on the tangent space. 

While the Euclidean metric is the conventional Euclidean dis- 

ance ( i.e. the distance of the straight line between two points), 

he Riemannian metric controlling intrinsic properties of a curved 

https://github.com/k16makki/dynPelvis/tree/master/Dynpelvis3D
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Fig. A14. Geodesic distances on Riemannian manifolds (expressed in mm for the bladder example): the lengths of the shortest paths connecting each vertex to the vertex 

x 0 , along the manifold. 
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urface allows one to define distances and angles on the manifold, 

hat best preserves the Euclidean geometry of the local tangent 

pace. Let u and v be two vectors of the tangent plane T x 0 M with

rigin x 0 , then the Riemann metric can be defined in the sense 

f inner (scalar) product by: g(t, x 0 , u, v ) = || u || . || v || .cos (u, v ) with

 ∈ [0 , 1] . 

In Riemannian geometry, a curve with tangential acceleration 

ero is called a geodesic . Geodesics are also characterized by 

he property of having vanishing intrinsic curvature. The shortest 

eodesic between two surface points x 0 and x 1 can be obtained 

y minimizing the following Dirichlet energy, subject to fixed end- 

oints γ (0) = x 0 and γ (1) = x 1 : 

 D (γ ) = 

1 

2 

∫ 1 

0 

| γ ′ (t) | 2 dt = 

1 

2 

∫ 1 

0 

g γ (t) (γ
′ (t) , γ ′ (t)) dt (23)

The length of the shortest geodesic curve γ is called a geodesic 

istance, it is like a flexibility when we define distance: 

 (γ ) = 

∫ 1 √ 

g γ (t) (γ ′ (t) , γ ′ (t)) dt (24) 

0 

17 
If the metric g reduces to the Kronecker delta δi j , then the 

q. 24 reduces to: 

 (γ ) = 

∫ 1 

0 

|| γ ′ (t) || dt (25) 

Fig. A.14 illustrates the Riemannian geodesic distances between 

he point x 0 ∈ M and each surface point x 1 ∈ M (example for one

econstructed bladder surface). 

In Riemannian geometry, each spherical mapping method is 

ubsumed by Ricci flow (the generic model). Like the heat equa- 

ion developed by Fourier ∂h 
∂t 

− α�h = 0 , where α is the diffusivity 

onstant, the Ricci flow is a non-linear PDE, but resulting from ge- 

metry rather than physics [66] . The Ricci flow is therefore a way 

f changing the metric tensor over time until it converges toward a 

ositive constant (the sphere curvature), according to the parabolic 

DE ∂g 
∂t 

+ 2 Ric g = 0 . Like the Riemannian metric g, the Ricci curva-

ure tensor Ric g is a symmetric bilinear form defined as the trace 

f the curvature tensor. It is therefore a mean of the information 

ontained in the Riemann curvature tensor. 

With a separation of space and time variables, the above de- 

ned heat equation (parabolic PDE) can be splitted into two ellip- 

ic PDEs that can be easily solved separately. In this particular case, 
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Fig. 15. Obtained mean curvature for the isosurface h = 0 . 98 . 
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he separation of variables is a result of the spectral theorem. More 

etails are provided in Appendix C . 

In the same analogy, and assuming that the solution is becom- 

ng time-independent under the imposed constraints, the Dirichlet 

nergy to be minimized is the one given in Eq. 14 . The harmonic

ap h minimizing this energy is the optimal solution of an ellip- 

ic PDE. By definition, a map h is called harmonic if its Laplacian 

anishes, �h = 0 . We then propose to recover the curve-shortening 

ow by integrating the normalized gradient of h . 

The resulting geometric flow is gradient like, i.e. a process that 

odify the surface curve toward the sphere by moving its points 

erpendicularly to the curve (the tangential acceleration vanishes), 

t a speed proportional to the curvature. The mean curvature (ex- 

rinsic) of the surface M can be derived from the obtained har- 

onic interpolant according to the divergence formula: κ(x ) = 

1 
2 di v ( ∇h (x ) 

||∇h (x ) || ) , ∀ x ∈ M . A visual example is provided in Fig 15 . 

Replacing γ ′ with N = 

∇h 
||∇h || in Eq. 25 , and assuming 

gain that the solution is time-independent, then the geodesic 

engths/distances can be defined (in the sense of optimization) by: 

 

∗(�N ) = min 

L 
( 

∫ ∂ 0 �

∂ 1 �
| |∇L − N | | 2 dx ) (26) 

he numerical integration of the above equation over � is per- 

ormed using an iterative Gauss-Seidel relaxation method, for lo- 

ally solving the following PDE: 

 L.N = ||∇ L || . || N|| .cos (∇ L, N) = 1 (27)

here the left term ( ||∇ L || . || N|| .cos (∇ L, N) ) is the scalar product

etween the two vectors, while the right term (1) controls the dis- 

ances and angles: by forcing infinitesimal lengths to be unitary 

nd by specifying the direction (angle = 0) in such a way that the 

radient of the scalar distance function ∇L coincides with the ve- 

ocity vector field N. Thus, the integrated trajectory is qualified as a 

eodesic and its length is locally defined and shortest in the sense 

f scalar product. 

ppendix B. Normalized gradient vector field 

To prove that the computed correspondence trajectories are 

eodesics, it is mandatory to prove that N (when taken up to the 

ign) is conservative (i.e. N is the gradient of a scalar distance func- 

ion). For this, it is sufficient to prove that N is vorticity/curl free 

irrotational) in the vicinity of each heat isosurface. But, this is 

on-trivial, since ||∇h || � = cste generally so that: 

curl(N) = ∇ × N = ∇ × ( ∇h 
||∇h || ) = ∇( 1 

||∇h || ) × ∇h + 

1 
||∇h || ∇ × ∇h ︸ ︷︷ ︸ 

= curl(∇h ) = 0 . 

= 

1 
||∇h || 2 ∇ (||∇ h || ) × ∇h . 
18 
Overall �, for each isosurface h = h iso , the fact that curl(N) = 0

epends essentially on how the vector field N is defined away from 

hat isosurface. However, on each isosurface, N is well defined and 

onservative [67] . 

• Formulation 1: Suppose N to be the normalized gradient of h 

over �. In this case, ∇ × N = 0 , when evaluated on the isosur- 

face h iso if and only if ||∇h || = cste . 
• Formulation 2: Define the function f = 

1 
||∇h || (h − h iso ) inside 

�. Suppose now that the surface (implicit) we are interested 

in is � = { f = 0 } . Developing the expression of the gradient of

f , we obtain: 

∇ f = 

∇ h 

||∇ h || −
(h − h iso ) ∇h · ∇ 

2 h 

||∇ h || 3 , (28) 

where ∇ 

2 (. ) is the Hessian operator. It is clear that the second 

term of the right-hand side of the Eq. (28) vanishes on � (since 

h = h iso ). Consequently, ∇ f restricted to the surface is still the 

unit normal vector field N. Moreover, ∇ × ∇ f is clearly zero as 

argued before. 

More generally, for a compact smooth surface � ⊂ R 

n , there ex- 

sts a real r > 0 such that on the set ω = { x ∈ R 

3 | dist(x, �) < r}
ne can solve the Eikonal PDE |∇ f | = 1 to get a continuous func- 

ion f : ω �→ R which satisfies � = f −1 (0) and such that ∇ f is the

nit normal vector field for any level set f −1 (c) . Under this formu- 

ation, the unit normal vector field N = ∇ f is curl-free in a nar- 

owband ω of the surface �. Moreover, applying the Stockes’ theo- 

em in the tubular neighborhood of �, we get: 
∫ ∫ 

ω (∇ × N) · dω = ∮ 
�

N · dl ︸ ︷︷ ︸ 
ounter-clockwise circulation 

= 0 . The real number r is related to the ra- 

ius of the surface mean curvature. Fig. 16 .(c) illustrates that for 

ach set ω c ⊂ � and for a small radius r, we have |∇h | = cste . 

ppendix C. Background on harmonic analysis for 2-manifolds 

The harmonic analysis on Riemannian manifolds is in fact a 

eneralization of Fourier spectral shape analysis. For which, the 

ourier modes on [0,1] are solutions of f ′′ = −λ f with boundary 

onditions (Dirichlet, Neumann, etc.). 

Again, the more general heat equation is the principal ingredi- 

nt. This equation reads: 

∂h 

∂t 
= α�h (29) 

here the function h describes the temperature distribution over 

he manifold. 
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Fig. 16. Method comparison with the Fast marching method. Comparison is based on the scalar product of their gradient vector fields, which is equal almost everywhere to 

1 inside �. 
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In the homogeneous case, the boundary conditions satisfy 

 (∂ x 0 M ) = h (∂ x L M ) = 0 . 

Looking now for a solution which is not identically zero satis- 

ying the boundary conditions and for which the dependence of h 

n x , t is separated, where x ∈ M and t denotes the time, that is:

 (x, t) = f (x ) .T (t) . (30) 

Using the product rule and substituting h back into equation 29 , 

e obtain: 

T ′ (t) 

αT (t) 
= 

� f (x ) 

f (x ) 
(31) 

Since the left hand side depends only on t and the right hand 

ide only on x , then both sides are equal to some constant value

λ. Thus: 

 

′ (t) = −αλT (t) , (32) 

nd 

f (x ) = −λ f (x ) (33) 

here: −λ represent the eigenvalues for both differential opera- 

ors, and T (t) and f (x ) are corresponding eigenfunctions. If we 

nly consider the heat vibration modes in the spatial domain, then 
19 
he heat equation reduces to Eq. 33 (a special case of the Poisson 

quation �φ = f , with f = λφ), for which, the solutions become 

ime-independent. 

Definition: 

Given a complete 2-Riemannian manifold without boundary 

closed surface), (M , g) equipped with a local metric tensor g and 

ith a local coordinate system u : x ∈ M → R 

2 / u (x ) = (u 1 , u 2 ) ,

he LBO acting on C ∞ functions is defined by: 

M 

f (u ) = 

1 √ 

det(g) 

∑ 

i, j 

∂ u j ( 
√ 

det(g) g i, j ∂ u i f (u )) (34) 

Consider now the Dirichlet eigenvalue problem: 

� f = −λ f in �, 

f = 0 on ∂�. 
(35) 

here: � ⊂ M . Solving this problem gives an infinite set of sorted 

igenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 . . . and a set of corresponding eigen- 

unctions �1 , �2 , �3 . . . (orthogonal in the sense of the scalar 

roduct), which form together an orthonormal basis of L 2 (M ) . An 

xample showing the five first eigenfunctions for a bladder surface 

s given in Fig. 17 . 

As proposed in [57] , the principle of spherical mapping is as fol- 

ows: for a surface point x ∈ M , there exists a C ∞ diffeomorphism
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Fig. 17. Surface spectral analysis: five first non-trivial LBO eigenfunctions (sorted from left to right). Colormap goes from blue (negative) to red (positive). The eigenfunctions 

with only two nodal domains �2 , �4 , and �5 were used for spherical parameterization. 

Fig. 18. Numerical integration of the velocity vector field (2D examples). Left: the dark curves indicate the trajectory of shape contour,or equivalently, the isocurves of the 

distance function. Right: the entire trajectories of some contour points, where the colorbar encodes the direction of the gradient vector field N in radians. Note that the 

principle remains the same in 3D. 
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, satisfying: 

� : M → S 
2 

 � −→ 

(�1 (x ) , �2 (x ) , �3 (x )) √ 

�1 (x ) 2 +�2 (x ) 2 +�3 (x ) 2 
(36) 

By solving Laplace equation under the condition of the equi- 

ibrium state, one can redefine the above defined diffeomorphic 

pherical mapping with the following application: 

�n : M → S 
2 

 � −→ 

�N (x ) 
|| �N (x ) || = 

(�N i 
(x ) , �N j 

(x ) , �N k 
(x )) √ 

�N i 
(x ) 2 +�N j 

(x ) 2 +�N k 
(x ) 2 

, (37) 

uch that �N (x 0 ) = (x 0 − c 0 ) + 

∫ ∂ 0 �
x 0 

N(x ) dx , where c 0 is the cen-

er of the surrounding sphere, and x 0 ∈ M . Intuitively, integrating 

he normal velocity vector field v = N (defined in Section 3.2.2 ) 

ives a smooth bijective map �N which transforms each surface 

oint x 0 ∈ M into its unique corresponding point in the surround- 

ng sphere x 1 , modulo translation (see examples of Fig. 18 ). The 

ay in which surface points move along the curve normal direc- 

ions within the Eulerian Framework resembles the principle used 

n level set methods to track evolving curves while providing a no- 

ion of correspondence [68] . 
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