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The Impact of Fatty Infiltration on MRI
Segmentation of Lower Limb Muscles

in Neuromuscular Diseases: A Comparative
Study of Deep Learning Approaches
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Background: Deep learning methods have been shown to be useful for segmentation of lower limb muscle MRIs of
healthy subjects but, have not been sufficiently evaluated on neuromuscular disease (NDM) patients.
Purpose: Evaluate the influence of fat infiltration on convolutional neural network (CNN) segmentation of MRIs from NMD
patients.
Study Type: Retrospective study.
Subjects: Data were collected from a hospital database of 67 patients with NMDs and 14 controls (age: 53 � 17 years,
sex: 48 M, 33 F). Ten individual muscles were segmented from the thigh and six from the calf (20 slices, 200 cm section).
Field Strength/Sequence: A 1.5 T. Sequences: 2D T1-weighted fast spin echo. Fat fraction (FF): three-point Dixon 3D
GRE, magnetization transfer ratio (MTR): 3D MT-prepared GRE, T2: 2D multispin-echo sequence.
Assessment: U-Net 2D, U-Net 3D, TransUNet, and HRNet were trained to segment thigh and leg muscles (101/11 and 95/11
training/validation images, 10-fold cross-validation). Automatic and manual segmentations were compared based on geometric
criteria (Dice coefficient [DSC], outlier rate, absence rate) and reliability of measured MRI quantities (FF, MTR, T2, volume).
Statistical Tests: Bland–Altman plots were chosen to describe agreement between manual vs. automatic estimated FF,
MTR, T2 and volume. Comparisons were made between muscle populations with an FF greater than 20% (G20+) and
lower than 20% (G20�).
Results: The CNNs achieved equivalent results, yet only HRNet recognized every muscle in the database, with a DSC of
0.91 � 0.08, and measurement biases reaching �0.32% � 0.92% for FF, 0.19 � 0.77 for MTR, �0.55 � 1.95 msec for T2,
and � 0.38 � 3.67 cm3 for volume. The performances of HRNet, between G20� and G20+ decreased significantly.
Data Conclusion: HRNet was the most appropriate network, as it did not omit any muscle. The accuracy obtained shows
that CNNs could provide fully automated methods for studying NMDs. However, the accuracy of the methods may be
degraded on the most infiltrated muscles (>20%).
Evidence Level: 4.
Technical Efficacy: Stage 1.
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Neuromuscular diseases (NMDs) are a broad group of
diseases that all affect nerves or muscles. Progressive

muscle and nerve damage leading to loss of motor function

has been reported as a hallmark of NMDs.1 The challenge
related to the follow-up of these changes is to have access to
specific and sensitive biomarkers, which could be used to
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assess the natural history of a disease or evaluate the efficiency
of a therapeutic strategy.2 These potential biomarkers could
also be helpful for a better understanding of the disease mech-
anisms and supportive diagnosis.3 Over the last decade, fatty
infiltration has been recognized as a ubiquitous phenomenon
in many neuropathies and dystrophies.4 Fatty infiltration is a
progressive replacement of muscle tissue by fat, which can be
identified using quantitative MRI approaches quantifying fat
fraction (FF).5 FF has been shown to be more sensitive to dis-
ease progression than clinical or myometric measurements.6

Although their interest as biomarkers has been less recognized
than FF, other types of acquisition, such as T2 mapping and
MTR, have been used to study NMDs.7–9 While the clinical
potential of these MRI biomarkers has been widely docu-
mented, utilization in clinics has not been reached so far.
This limited use is related to the availability of sequences and
the variability of scans but also to the fact that biomarker
quantification requires a preliminary step of delineation (seg-
mentation) of the regions of interest (i.e. individual muscles).
To benefit from the 3D nature of MRI, segmentation should
be performed on a volume, that is, on all the slices along the
proximo-distal axis.10–12 Segmentation should distinguish
each individual muscle given that disease extent can vary
among different muscles.13–17 It has been largely recognized
that manual segmentation is not an option in this specific
context.18,19 The corresponding task is time-consuming and
suffers from operator dependency.20

In the literature, to date, a limited number of fully or
semi-automatic methods have been reported to be effective in
reducing segmentation time.18,19,21–26 However, the high
inhomogeneity of fatty infiltration among individual muscles
regarding patients and diseases is a major concern for those
methods.18,19 As a matter of example, in Charcot-Marie-
Tooth (CMT) patients, FF can vary from 0% to 81%.11 A
semi-automated method based on contour propagation of a
few manually segmented slices provided interesting results,
but manual entry can still be considered prohibitive for large-
scale clinical use.27,28

Recently, a few studies have assessed the potential of
deep learning methods based on convolution neural networks
(CNNs).19,21–26 These studies have shown promising seg-
mentation results on healthy subjects, but few have investi-
gated severe fat infiltration. Three studies reported results in
severely infiltrated patients.21,26,29 Although each study
reported a difference in outcomes between moderate and
severe infiltrations, the evolution of CNN performance as a
function of FF was not investigated. In addition, the potential
of segmentation methods was evaluated based on similarity
between manual and automatic segmentations but not on the
validity of quantitative MRI biomarker measurements. To
date, only Chen et al and Ding et al evaluated the accuracy of
quantitative MRI biomarkers using fully automatic segmenta-
tion. However, the evaluation was performed on a

homogeneous base of lightly infiltrated subjects, as evidenced
by their FF measurements.23,24 Overall, the robustness of
CNN-based segmentation methods with respect to the extent
of fat infiltration remains unknown.

Among the large variety of neural networks dedicated to
segmentation, only recent CNNs, known to be efficient for
medical image segmentation, have been chosen to address this
question.30–33 The obvious choice was U-Net 2D, the refer-
ence CNN for medical image segmentation.30 U-Net 3D, a
variant of U-Net for processing volumes, was selected to com-
pare the 2D and 3D approaches.31 Two other networks,
transUNet and HRNet, were selected, as they address the rec-
ognized shortcomings of U-Net. TransUNet allows evaluating
the relation between the different elements of the image
thanks to the presence of the vision transformer module.32

HRNet overcomes the loss of information due to the com-
pression of the image in the U-Net encoder.33

The objective of this study was to evaluate the perfor-
mance of these four networks, as a function of fatty infiltra-
tion. To enrich the training and evaluation of CNNs, a
database consisting of patients from three NMDs and con-
trols was collected.

Subjects and Methods
Standard Protocol Approvals, Registrations, and
Patient Consents
The study was approved by the local research committee and was
conducted in conformity with the Declaration of Helsinki (version
October 2013) and the Medical Research Involving Human Subjects
Act. Prior written informed consent was obtained from all subjects.
Each patient provided an informed consent for a retrospective analy-
sis of the MR images recorded as part of the research protocol they
volunteered for.

Subjects
Data were collected from a hospital database collecting the work of
three previous studies, on three different diseases, from the reference
center for NMD and ALS at the university hospital of La
Timone.12,34 The cohort consisted of 67 patients with NMD and
14 controls (age: 53 � 17 years, sex: 48 M, 33 F). The patients
included 29 familial amyloid polyneuropathies (FAP), 18 CMT dis-
eases, and 20 chronic inflammatory demyelinating polyneuropathies
(CIDP). There was no recruitment or inclusion processes, since the
data were only collected from previous studies, which had their own
recruitment/inclusion process. A few patients have been scanned sev-
eral times and the whole set of images have been integrated in the
training database, to ensure proper training of the CNNs. The
corresponding MRI dataset was composed of 218 MRI volumes
(112 thighs and 106 legs).

Briefly, familial amyloid polyneuropathy (FAP) is a rare
genetic disorder with autosomal-dominant inheritance due to a
mutation in the transthyretin (TTR) gene, which causes a rapid pro-
gressive polyneuropathy.35 All subjects had a confirmed mutation in
the TTR gene, with 25 symptomatic patients and 14 pres-
ymptomatic carriers. CMT disease is the most common cause of
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hereditary neuropathy.36 All patients from our cohort were geneti-
cally confirmed as CMT1A patients with a classic mutation in the
PMP22 gene. The third type of patient was composed of chronic
inflammatory demyelinating polyneuropathy (CIDP), an acquired
immune-mediated neuropathy characterized by a sensory-motor
impairment. All CIDP patients fulfilled the definite clinical and elec-
trophysiological European Federation of Neurological Societies
(EFNS)/Peripheral Nerve Society (PNS) criteria for CIDP.37 No
patient had any history of other neuromuscular condition. The con-
trol group was composed of individuals with no medical history of
neuropathic or muscular disease.

MRI Acquisitions
MRI scans were recorded at 1.5 T (MAGNETOM Avanto, Siemens
Healthineers, Erlangen, Germany) at the thigh and leg levels using a
spine coil on the bottom and two flexible coils on the top of the
lower limb. 2D T1-weighted fast spin echo (T1w) images (repe-
tition time [TR] = 549 msec; time to echo [TE] = 11 msec; flip
angle [FA] = 120�; bandwidth = 195 Hz/pixel; in-plane matrix
size/voxel size = 320 � 320/0.68 � 0.68 mm2; 20 slices [slice
thickness = 10.00 mm]; slice gap = 5.00 mm) were acquired
and used as anatomical images for the muscle segmentation pro-
cess. In addition, a three-point Dixon 3D gradient-echo (GRE)
sequence (TR = 22 msec; eight echoes with TE from 2.38 msec
to 19.06 msec in steps of 2.80 msec; bandwidth = 1220 Hz/
pixel; FA = 5�; matrix size = 128 � 128 � 36; resolution =

1.72 � 1.72 � 5.00 mm3) was acquired and used to generate fat frac-
tion maps as previously described.27 MTR maps were generated from
a 3D MT-prepared GRE (TR = 36 msec; TE = 3.50 msec;
FA = 10�; bandwidth/pixel = 200 Hz/pixel; matrix
size = 128 � 128 � 36; resolution = 1.72 � 1.72 � 5.00 mm3;
MT offset frequency = 1200 Hz; MT flip angle = 750�; handshaped
MT pulse duration = 10.0 msec). T2 maps were generated from the
postprocessing of a 2D multispin-echo sequence (TR = 2500 msec;
16 echoes with TE from 8.7 msec to 139.2 msec in steps of 8.7 msec;
FA = 180�; bandwidth = 454 Hz/pixel; in-plane matrix size/voxel
size = 128 � 128/1.72 � 1.72 mm2; 10 slices [slice
thickness = 20.00 mm]; slice gap = 10.00 mm).

Ground Truth Segmentations
A total of 10 (respectively 6) individual muscles were delineated in
the thigh (respectively in the leg). The ROIs for the thighs consisted
of the following individual muscles: adductor (Ad), biceps femoris
(BF), gracilis (Gr), rectus femoris (RF), sartorius (Sa), semi-
membranosus (SM), semitendinosus (ST), vastus intermedius (VI),
vastus lateralis (VL), and vastus medialis (VM). For the leg, the fol-
lowing muscle groups were delineated: anterior compartment (AC),
deep posterior compartment (DPC), gastrocnemius lateralis (GL), gas-
trocnemius medialis (GM), lateral compartment (LC), and soleus (So).

The segmentations were performed by neurologists who had
participated in the various research protocols from which the data
were gathered, and each had at least 5 years of segmentation experi-
ence (E.F., C.P.M.). The segmentations were also reviewed by
another nonclinical operator with 3 years of experience in manual
segmentation (M.-A.H).

Manual segmentation was performed on T1w images. The
raters only segmented a limited number of slices, depending on the

patient, and a semi-automatic method using a combination of dif-
feomorphic registrations was used to propagate these segmentations
to the remaining slices.27,28 The final segmentations were checked
by the same observers, to correct the propagated masks if needed.

Implementation
CNN architecture appears in Fig. 1. U-Net 3D is not presented
since its architecture is very similar to U-Net 2D, with 3D convolu-
tions instead of 2Ds. The network is four-layered and the number of
channels is 24/48/96/192 for the encoder, and the decoder is built
symmetrically. The volumes were padded with replicated slices on
the extremities to create a 320 � 320 � 24 volume, making it easier
to divide the number of slices per two at each layer. The characteris-
tics of the other neural networks are described in Fig. 1.

A Python 3.8.3 environment was used to implement the
CNN training with PyTorch 1.11.0 Experiments were run on a
Linux Xeon Silver Workstation (4214cpu@2.2 GHz–96 Gb) with a
Nvidia GeForce RTX 3090 GPU.

The T1w images were used for the CNNs training and con-
sisted of 112/106 thigh/calf volumes for the 3D set and 2240/2120
thigh/calf images for the 2D set. The validation set represented 10%
of the training set. Networks were individually trained using 10-fold
cross validation. The loss function was the Dice loss, a standard
function for image segmentation library for deep learning. The opti-
mization algorithm was the PyTorch version of Adam.38 Each net-
work was trained with an early stopping strategy with patience of 10
epochs. No data augmentation was performed, as the addition of
random rotation and shift did not result in improved performance of
the CNNs.

Evaluation
The performance of each network was compared to the ground truth
(manual segmentation) based on geometric similarity metrics and
MRI biomarkers agreement. The geometric metric included the
commonly accepted, that is, DSC, an index of segmentation quality
ranging from 0 (no overlap) to 1 (total overlap). In addition, for
each metric, the outlier rate (OR) and the rate of unidentified mus-
cles (AR) were computed. The OR was calculated as the rate of met-
ric values that are lower to the threshold value Q1-1.5*IQR with
IQR = Q3-Q1, Q1 being the lower quartile and Q3 the upper
quartile of the corresponding metric. The AR represents the ratio
between the number of muscles volumes identified by operators and
the number of muscles detected by the CNNs.

From the quantitative MRI maps (FF, MTR, T2), the values
of each quantity were calculated as the average of the values of the
corresponding map over the entire volume. For each metric, a pre-
diction error score ΔX was computed to represent the difference
between the measured values with the masks from automatic seg-
mentation Xa and ground truth Xm, where X stands for FF, MTR,
T2 or volume.

Statistical Analysis
A benchmark analysis of the performance of the segmentation
methods was conducted. This was based on two criteria: 1) average
similarity between automatic and manual segmentations through
DSC, OR and AR; and 2) average measurement bias of the MRI
quantities (ΔFF, ΔMTR, ΔT2, and ΔV).
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Based on this comparison, the measurement bias of the best
model was investigated regarding the degree of fatty infiltration, rep-
resented by the FF, using a Bland–Altman plot.

The impact of fat infiltration on performance was also
investigated by studying the differences in accuracy between two
subgroups of muscles with FFs less (G20�) and greater (G20+)
than 20%. The 20% threshold was chosen since it was approxi-
mately the maximum value on which CNNs segmentation has
been evaluated in former studies.23,24 To test the difference in
accuracy between G20+ and G20�, the distribution of samples
was initially evaluated using the Shapiro–Wilk test. Differences
were then assessed using non-parametric Wilcoxon pairwise tests
or parametric Student’s t-tests. The significance level was set
at P < 0.05.

Results
CNN Training
Training time ranged from 2 hours (U-Net 2D) to 3 hours
(HRNet) per network. To perform 10-fold cross validation,
the total time was thus between 20 hours for U-Net 2D and
30 hours for HRNet.

Fat Infiltration Distribution
As illustrated in Fig. 2, the distribution of the biomarkers of
interest was heterogeneous. Heterogeneity was described by
the values of mean � standard deviation, range, and coeffi-
cient of variation for each metric: FF (8.76 � 7.68, [1.87,
64.34], 0.88) (%); MTR (48.01 � 6.21, [9.69, 55.78],
0.13); T2 (55.47 � 15.86, [34.72, 151.72]; 0.29) (msec).

Ground Truth vs. Predicted Segmentation
DSC, ΔFF (%), ΔMTR, ΔT2 (msec), and ΔV (cm3) values
for each model and each muscle are presented in Fig. 3. For
the whole dataset, the average values were 0.92 � 0.05
(DSC), �0.28 � 1.00% (ΔFF), 0.17 � 0.83% (ΔMTR),
�0.49 � 2.11 msec (ΔT2), and �0.35 � 16.83 cm3 (ΔV).

As can be seen in Fig. 3, DSC values were high, with
the largest value obtained for Ad (0.95 � 0.01) and the low-
est for GM (0.86 � 0.09). The smallest FF error was
observed for So (0.32 � 0.33) and the largest for GM
(1.19 � 1.16). ΔMTR reached the minimal value for So
(0.28 � 0.27) and the maximal for Gr (1.09 � 0.98).
Regarding the ΔT2 (msec), So was the muscle with the

FIGURE 1: (a) Networks architecture including number of channels and number of convolutional layers with U-Net 2D, TransUNet,
and HRNet. D: dimension of the square image, C: number of channels. (b) Processing pipeline composed of 1) training CNNs on T1w
image database; 2) predicting segmentations with one of the four trained CNNs; 3) applying predicted segmentations to each qMRI
maps to; 4) extract scores for each biomarker to compare them with those from manual segmentations.
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smallest error (�0.81 � 0.90), whereas the largest error was
observed for Gr (�2.95 � 2.39). The smallest volume error
ΔV(cm3) was found for Gr (3.37 � 3.14) and the largest for
So (15.66 � 14.11).

The Pearson correlation coefficient between DSC and
each biomarker metrics did not exceed �0.45.

Comparison of Network Performances
The performance of each network on the thigh and leg is
presented for each metric in Table 1.

For the thigh, results ranged from [0.92 � 0.05 (U-Net
3D), 0.93 � 0.04 (HRNet)] for DSC, [�0.32 � 0.82% (U-
Net 2D), �0.37 � 0.91% (HRNet)] for FF, [0.17 � 0.
86 (3D U-Net), 0.25 � 0.76 (HRNet)] for MTR,
[�0.62 � 1.84 msec (HRNet), �0.55 � 1.77 msec (2D
U-Net)] for T2, and [�0.25 � 3.18 cm3 (HRNet),
�0.11 � 3.11 cm3 (2D U-Net)] for volume.

For the leg, results ranged from [0.88 � 0.08 (3D U-
Net), 0.89 � 0.11 (HRNet)] for DSC, [�0.23% � 0.93%
(HRNet), �0.10% � 1.12% (transUNet)] for FF,
[0.07 � 0. 68 (2D U-Net), 0.09 � 0.77 (HRNet)] for

FIGURE 2: Distribution of FF (%), MTR, and T2 (msec) over our dataset composed of 96 thighs and 90 legs, that is, 1500 muscles.

FIGURE 3: DSC, ΔFF (%), ΔMTR, ΔT2 (msec) and ΔV (cm3) for each model and each muscle. Values are represented as the median
with the first and third quartiles, respectively. The horizontal lines indicate the median values averaged for the whole set of CNNs
and muscles (median), the averaged third quartile (upper) and the averaged first quartile (lower) (corresponding values are displayed
on the right side). Thigh: Ad, adductor; BF, biceps femoris; Gr, Gracilis; RF, rectus femoris; Sa, sartorius; SM, semimembranosus; ST,
semitendinosus; VI, vastus intermedius; VL, vastus lateralis; VM, vastus medialis. Calf: AC, anterior compartment; DPC, deep
posterior compartment; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; LC, lateral compartment; So, soleus.
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MTR, [�0.42 � 2.12 msec (HRNet), �0.04 � 2.27 msec
(3D U-Net)] for T2, and [�0.63 � 4.40 cm3 (HRNet),
0.44 � 3.44 cm3 (transUNet)] for volume.

Regarding identification error, HRNet reached an AR
score of 0%, whereas this score ranged from 1.39% to 4.04%
for the other networks (Table 1). The OR scores slightly var-
ied between networks and were between 4.53% and 5.77%
for the thigh and 6.39% and 7.52% for the leg. The rate
of outlier was about 2% higher for the leg muscles as com-
pared to the thigh muscles. Figure 4 shows an illustration
of missing muscle segmentation, representing the AR, and
examples of errors in muscle contour detection, rep-
resenting the OR. The AR score is illustrated by an exam-
ple of missing muscle segmentations in Fig. 4b. Similarly,
the OR score is highlighted by examples of poor muscle
contour detection in Fig. 4c,d.

Robustness to Fat Infiltration
The sensitivity of measurement errors to fat infiltration is
illustrated by the Bland–Altman plot shown in Fig. 5. Con-
sidering that the whole set of networks performed similarly
well and for the sake of clarity, Bland–Altman plots are only
presented for HRNet, the CNN for which the whole set of
muscles was identified.

As indicated by the confidence intervals, the reliability
of the measurements ranged between [�2.12, 1.49] (%) for
ΔFF, [�1.32, 1.7] for ΔMTR, and [�4.36, 3.26] (msec) for
ΔT2. The reliability for volume error was smaller with a
larger confidence interval equal to [�7.58, 6.81] (cm3). The
mean error and standard deviation for each metric were con-
sistently larger for the G20+ group than the G20 group
(Table 2). In addition, the statistical study revealed that the
increase in error was significant for each metric (P values
<1.00 � 10�3).

Discussion
In this study, the performance of CNNs for automatic seg-
mentation of individual muscles was evaluated. 2D U-Net,
3D U-Net, transUNet, and HRNet were selected from the
state of the art to perform this task. The models were tested
on a large database heterogeneous in degree of fat infiltration,
composed of patients from three different NMDs and a pop-
ulation of controls. A comparison of the results was made
according to the similarity of the predicted segmentations
with the manual references (DSC, AR, and OR) as well as
the agreement between the MRI quantities measured with
the segmentations of the CNNs and the references (FF,
MTR, T2, volume). The results of the best model, HRNet,
were studied against the degree of infiltration, that is,
FF. Finally, the muscle population was divided into two infil-
tration subgroups (G20�, G20+) to perform a statistical
comparison of HRNet performance on each group.

The accuracy of the automatically predicted segmenta-
tions, illustrated by DSC values, was slightly better than the
values reported in the literature using CNNs (from 0.77 to
0.93)21,23,24,26 and similar to the values reported using non
learning semi-automatic methods (0.90 � 0.03).27 It is note-
worthy that for the latter method, manual segmentation of a
few slices was needed as a preliminary step, and this prerequi-
site might be seen as a limitation for large clinical applica-
tions.18 Our method was consistent, as the results obtained
on our heterogeneous database in fatty infiltration (ranging
from 1.87% to 64.34%) were comparable with the scores
reported in the literature on a slightly infiltrated set of sub-
jects (<20%).24,32 Moreover, our results were superior to
those obtained on a set of severely infiltrated subjects in the
studies of Rohm et al (0.85 � 0.08), Agosti et al (0.87), and
Gadermayr et al. (0.88).21,26,29 Although of interest, DSC
cannot be considered as a standalone index for assessing the
performance of a segmentation algorithm in a clinical context.

TABLE 1. Average Evaluation Scores Over Thigh and Leg Muscles for HRNet, TransUNet, U-Net 2D, and U-Net 3D

Section Network DSC ΔFF (%) ΔMTR ΔT2 (msec) ΔV (cm3)
AR
(%)

OR
(%)

Thigh HRNet 0.93 � 0.04 �0.37 � 0.91 0.25 � 0.76 �0.62 � 1.84 �0.25 � 3.18 0.00 5.77

TransUNet 0.92 � 0.04 �0.34 � 0.94 0.21 � 0.78 �0.60 � 1.99 �0.17 � 3.56 2.28 6.68

UNet2D 0.93 � 0.04 �0.32 � 0.82 0.20 � 0.75 �0.55 � 1.77 �0.11 � 3.11 1.70 4.53

UNet3D 0.92 � 0.05 �0.34 � 1.20 0.17 � 0.86 �0.55 � 2.12 �0.11 � 3.47 4.04 4.76

Leg HRNet 0.89 � 0.11 �0.23 � 0.93 0.09 � 0.77 �0.42 � 2.12 �0.63 � 4.40 0.00 7.52

TransUNet 0.88 � 0.08 �0.16 � 1.13 0.07 � 0.94 �0.33 � 2.73 0.44 � 3.44 0.00 6.64

UNet2D 0.89 � 0.12 �0.17 � 0.88 0.07 � 0.68 �0.41 � 2.16 �0.51 � 3.45 3.89 7.48

UNet3D 0.88 � 0.08 �0.10 � 1.12 0.07 � 0.99 �0.04 � 2.27 0.50 � 3.45 1.39 6.39
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FIGURE 4: Examples of 2D U-Net-based segmentation for thigh and leg muscles showed in the axial plane. (a) Appropriate
segmentation, (b) example of unidentified muscles. (c, d) Errors in contours detection. Thigh: Ad, adductor; BF, biceps femoris; Gr,
Gracilis; RF, rectus femoris; Sa, sartorius; SM, semimembranosus; ST, semitendinosus; VI, vastus intermedius; VL, vastus lateralis; VM,
vastus medialis. Calf: AC, anterior compartment; DPC, deep posterior compartment; GL, gastrocnemius lateralis; GM, gastrocnemius
medialis; LC, lateral compartment; So, soleus.

FIGURE 5: Bland–Altman type plots showing the biomarker errors obtained with HRNet segmentations with respect to fat fraction.
Horizontal lines indicate the �95% confidence interval of each measurement error. The vertical blue lines indicate the 20%
delimitation between moderate and severe fat infiltration. Each symbol represents the error on one muscle. Thigh: Ad, adductor;
BF, biceps femoris; Gr, Gracilis; RF, rectus femoris; Sa, sartorius; SM, semimembranosus; ST, semitendinosus; VI, vastus intermedius;
VL, vastus lateralis; VM, vastus medialis. Calf: AC, anterior compartment; DPC, deep posterior compartment; GL, gastrocnemius
lateralis; GM, gastrocnemius medialis; LC, lateral compartment; So, soleus.
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While DSC informs about the overlapping between a
predicted and a manually segmented mask, one must quantify
clinically useful indices such as FF, MTR, and T2. Rather
counter-intuitively, DSC values in our evaluation were poorly
correlated with biomarkers quantification errors. In other
words, a high DSC value would not be indicative of a
reduced error regarding other metrics of interest. For exam-
ple, a segmentation mask with a high DSC could properly
cover a muscle region. However, if it also covers some other
voxels around the muscle, that is, intermuscular fat, then the
FF could be highly biased. Similarly, if the DSC is low, but
the segmentation is in the central part of a muscle with a
homogeneous infiltration, quantification of biomarkers would
not be biased, and the corresponding results would be close
to those from the ground truth. Thus, from a clinical out-
come perspective, the most relevant performance indicator in
segmentation studies may be biomarker quantification.

In a clinical context and more specifically in the field of
neuromuscular disorders, CNNs are expected to provide a
high-quality segmentation of individual muscles, which could
be used to compute MRI biomarkers with a very high accu-
racy. This is of utmost importance if one intends to use MRI
biomarkers to follow-up the natural history of muscle diseases
or to assess the efficiency of a therapeutic strategy in a short
time window. The corresponding errors quantified in the pre-
sent study were relatively low, �0.3% � 1.0% for FF,
0.2 � 0.8 for MTR, and �0.55 � 1.94 msec for T2. Of
interest, the errors were lower than the changes reported over
a 12-month period in CMT1A (FF: 1.1% � 2.4%, T2:
1.4 � 2.6 msec, MTR: 1.1 � 2.4).7 This result clearly indi-
cates that CNN-based segmentation could be used to com-
pute MRI biomarkers of interest and characterize subtle
changes in longitudinal follow-up studies. This would imply
that the infiltrated images would be correctly segmented
as well.

The accuracy of quantitative MRI biomarker quantifica-
tion based on fully automatic segmentation methods has been
poorly evaluated in the literature. Only two studies have
reported FF quantification in individual muscles using U-

Net-based segmentation and the corresponding assessment
was performed in a limited number of patients, that is,
24 and 4, respectively.23,24 While Ding et al reported a
0.17% systematic bias, Chen et al reported a confidence
interval of [0.56%, 0.49%] for the thigh, and [0.71%,
0.84%] for the leg muscles.23,24 FF errors computed in our
entire database were slightly larger than theirs with a system-
atic bias of 0.28% and a CI of [2.12%, 1.49%]. However, it
should be kept in mind that the infiltration range in our data-
base (<64%) was much larger than those in the quoted stud-
ies (<20%) and this is likely to have a detrimental effect on
the quality of segmentations. By selecting only muscles with
0%–20% infiltration, the biomarker estimation results (sys-
tematic bias: 0.20%, CI: [1.38%, 0.976%]) were closer to
the values reported by Ding et al and Chen et al.24,32

Comparative analysis between systematic errors
obtained in muscles with FF values below (G20�) and above
20% (G20+) conducted in our database indicated that the
segmentation and accuracy of the corresponding biomarker
were negatively affected by high FF values. This effect was
particularly noticeable on volume, where the error was
increased 10 times on severely infiltrated muscles. This dis-
torting effect of FF could be related to the fact that fat infil-
tration could affect the visibility of muscle boundaries.

The volumes of muscles segmented by CNN were
lower on average than the corresponding volumes calculated
from manual segmentations. In other words, the volume of
CNN segmentations was significantly underestimated on the
most infiltrated muscles.

Detailed inspection of the individual MR images in our
cohort suggests that the FF value is not the only factor
responsible for the quantification bias. The pattern of fatty
infiltration also appears to play a role. Although this aspect
warrants further study, sparse infiltration would not prevent
the detection of muscle contours and would not bias the
quantification of muscle volume. On the contrary, a more
compact infiltration would have a more detrimental effect.

In terms of geometric efficiency, the different CNNs
performed almost equally well, with minimal differences

TABLE 2. Average Errors Obtained With HRNet Segmentations on Muscles With FF < 20% (G20) and FF > 20%
(G+)

Metric G20� G20+ P value

DSC 0.92 � 0.04 0.87 � 0.09 4.48E-15

ΔFF (%) �0.27 � 0.77 �1.09 � 2.11 2.43E-04

ΔMTR 0.17 � 0.73 0.56 � 1.25 1.00E-03

ΔT2 (msec) �0.48 � 1.82 �1.69 � 3.20 4.98E-04

ΔV (cm3) �0.19 � 2.91 �1.90 � 4.63 3.89E-04
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regarding DSC values. All the CNNs, apart from the HRNet,
failed to identify some muscles. The non-identification corre-
sponds to the fact that the CNN associates the absent muscles
to the background of the image, thus an improvement track
could be explored in this direction. Since the identification of
individual muscles is essential for the correct quantification of
biomarkers, this study identifies HRNet as the most appropri-
ate network for the segmentation of muscle images.

Limitations
This study was performed with data from a single center and
a single scanner. It would be relevant to compare the
performance of the CNNs on another database, from
another center, and on other neuromuscular diseases
(eg facioscapulohumeral muscular dystrophy). As the accuracy
of deep learning methods is highly dependent on the nature
of the training data, a transfer learning approach might be
required to achieve the same results.39

Many neural networks could have been used in this
study. Among the great variety of CNNs, we have chosen
U-Net, the standard for medical image segmentation, as
well as variants using a transformer module and 3D
processing. To diversify our approach, we have chosen to
test a different architecture from the encoder–decoder
scheme with HRNet. We believe that the choice of these
four networks was sufficient to evaluate the effect of fat
infiltration on the automatic segmentation. Testing other
architectures may be done in the future, but would be
beyond the scope of this study.

The reliability of our approach was assessed from a
comparative analysis with manual segmentation. Although
the manual segmentation strategy was carefully detailed in
guidelines, previous comparative analyses have indicated
that DSC values computed for segmentations performed
by different observers ranged from 0.80 to 0.95.27 We con-
sidered that this variability regarding manual segmentations
was of interest given that it provided an additional source
of heterogeneity which might be learned by the CNNs.
However, this necessarily implies that without absolute
ground truth, the goal of a fully automated segmentation
method should be to achieve an accuracy that matches the
inter-operator variability.

Conclusion
All four networks tested in this study provided high-quality
segmentations on FAP, CMT, and CIDP patients. That indi-
cates/illustrates they could be used for accurate quantification
of biomarkers. Although we identified a biasing effect of fat
infiltration on biomarker accuracy, it was still acceptable com-
pared with the 12-month patient biomarker trends, demon-
strating the potential of follow-up studies.
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