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Abstract—Pelvic floor disorders mainly affect women and turn
to be a public health issue although their pathophysiology is
still poorly understood. As the main concerned organs undergo
motions and deformations that are specific to the pathology,
dynamic MRI is a gold standard for radiologists. Unclear
organ boundaries, inter-subject variability of organ shapes and
pathological deformities make segmentation difficult to perform.
To develop imaging software aimed at pathologies gradation, the
accuracy of the segmentation of organ boundaries on MRI is
an essential criterion. Automatic methods are not yet accurate
enough to replace the mandatory manual segmentation step.
Automatic segmentation methods using fully convolutional neural
network (FCN) have been developed, but the loss functions
used for their training were generally not sensitive enough for
the detection of organ boundaries. We propose a loss function
dedicated to organ boundary detection to enhance training and
therefore improve results accuracy. The method was evaluated
on bladder segmentation from dynamic 2D MRI, using a baseline
U-Net architecture [1]. We demonstrated that our network
trained with a combination of a contour-based loss function and
the widely used Dice loss outperformed existing methods and
networks trained with the Dice loss alone.

Index Terms—Image segmentation, Deep learning, Loss com-
bination, Distance map loss, Dynamic MRI, Pelvis

I. INTRODUCTION

Pelvic floor disorders affect 50% of women over the age of
50 [2]. Pathophysiology is poorly known, causes are multiple
and symptoms may vary from incontinence to sexual dys-
function or pelvic organ prolapse. Current clinical practices
for the study of these pathologies involved dynamic 2D MRI
on the sagittal plane showing the movement of the organs
during straining exercises. The segmentation of these images
is mandatory for the computer aided quantitative analysis of
organ deformations, beyond a simple visual investigation [3].
To date, segmentations are mainly performed manually and
are a complex and time-consuming task, as they must be
performed on each image of a sequence. In addition, 2D
dynamic MRI segmentation is a challenging task because:
(1) pelvic organ boundaries are not well contrasted (2) organ

deformation along the sequence is significant due to stress
exercise. Automatic segmentation methods such as active-
contour methods have been developed to perform the seg-
mentation of pelvic organs but these methods require user-
intervention which is a time-consuming and subjective process
[4]. More recently, deep learning methods (DL) have been
developed for medical image segmentation with the emergence
of fully convolutional network such as the U-Net architecture
[1]. U-Net has provided convincing results for pelvic organ
segmentation without user-intervention. However, with respect
to the pelvic region, studies have mostly been performed using
computed tomography (CT) images for the study of prostate
cancer [5]. Fewer studies were dedicated to MRI, dealing
mainly with axial rather than sagittal plane [6], [7]. To the best
of the authors knowledge, this study is the first application of
a deep learning method to the segmentation of pathological
female pelvis on 2D dynamic MRI.

In DL based pelvic segmentation, boundary aware rep-
resentations were used only on CT images [8]–[10]. In
these methods, additional networks were used to integrate
the boundary-sensitive aspect, which complicated the network
training and the hyperparameter tuning. In [9], the authors
used a multiclass ground truth representation to implement
the boundary representation, making the network training even
more complex. In [10], a non-differentiable loss function was
used, which is problematic for the gradient descent process.

Instead of using multiple networks, we investigated on the
loss function, central component of a FCN training. Research
has been conducted on modules that take into account the
distance between segmentation boundaries to complement the
information provided by the Dice loss function. Various studies
have been carried out on loss functions using distance maps
[11]. Among the boundary-based loss functions, a method
using the estimation of the average distance between surfaces
(ASD) was found to be effective [12], [13]. It did not require
additional modules and did not have a high algorithmic cost,
which made it a good candidate to improve the pelvic organs
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boundary detection.
The challenge was then to combine the distance function

with the Dice loss function, the two functions having different
scales and gradients. In the literature, this issue is not generally
discussed and only empirical solutions were proposed [11].

The first contribution of our study is the combination of
the Dice loss function with a boundary loss function using a
gradient rescaling technique. The second contribution consists
in applying our method, with a U-Net architecture, to the
segmentation of pelvic organs on dynamic 2D sagittal MRI.
We showed that our approach improved contour accuracy on
dynamic images of controls and patients with pathological
disorders and outperformed DL methods using standard loss
functions and more classical methods such as active contours.

II. METHODS

The first part of this section describes the metrics used for
the evaluation of the results, this explanation being necessary
to understand the proposed loss function. Then follows a
description of the function and the solution found to associate
it with the Dice loss.

A. Evaluation metrics

Experimental results need to be assessed with quantitative
scores to show the accuracy of a segmentation method. The
results were evaluated using 3 common indicators in segmenta-
tion that quantify the similarity between the network prediction
and the manually established ground truth. The first one is the
Dice similarity coefficient (DSC) which measures the overlap
between a segmentation result and the ground truth. Let X be
the network prediction and Y the ground truth mask, where
X and Y are binary images. The DSC is defined by (1) with
values varying between 0 (no overlap) and 1 (full overlap).

DSC(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

(1)

The two other indicators concern the distance from the mask
boundary: the average surface distance (ASD) (2) and the
Hausdorff distance (HD) (3). ASD measures a global distance
error whereas HD focuses on the longest difference between
prediction and the mask. Each measure is symmetric with
respect to its operand. Let ∂X, ∂Y be respectively the bound-
aries of X and Y , and δ(x, y) the euclidean distance between
two points x and y. δ(x, ∂Y ) denotes the minimal euclidean
distance between x and the boundary ∂Y .

ASD(∂X, ∂Y ) =

∑
x∈∂X δ(x, ∂Y ) +

∑
y∈∂Y δ(∂X, y)

|∂X|+ |∂Y |
(2)

HD(∂X, ∂Y ) = max{ sup
x∈∂X

δ(x, ∂Y ), sup
y∈∂Y

δ(∂X, y)} (3)

Although the DSC is a widely used measure, it is not
sufficient to properly assess a result quality since it represents
an average which is not sensitive to thin shaped errors. For
example, in Fig. 1 in the upper right image, although the
DSC is high (0.89) so is the HD (6.6 mm), showing a

Fig. 1. Examples of 3 bladder image segmentations: ground truth (red),
network trained with LO (green), network trained with the proposed method
LP (blue). Yellow arrows show main delineation errors.

segmentation failure. Overlap and distance between boundaries
are complementary to compare efficiency of segmentation
algorithms. Since the network is trained to minimize the loss
function, a well-designed loss function should consider these
3 metrics.

B. Loss functions

Our function is designed as a combination of an overlap
based function (Dice loss) and a boundary-aware loss based
on ASD.

The Dice loss is a well known estimation of DSC. Let
Ω ⊂ R2 be the pixel grid where p ∈ Ω represents a pixel
coordinates, X is the network output composed of real values
in [0, 1] (i.e. the probability softmax output). Let Y be the
binary ground truth (1 inside, 0 outside). LO, the DSC based
loss function is as follows:

LO(X,Y ) = 1− 2

∑
p∈ΩX(p)Y (p)∑

p∈ΩX(p)2 +
∑

p∈Ω Y (p)2
(4)

LO values are ranged between 1 (no similarity) and 0 (perfect
similarity) with real values in order to be minimized by the
optimization process.

The second loss was inspired by the ASD score. However,
ASD (or HD) cannot be used as loss functions for a learning
algorithm because they are not differentiable and have a high
algorithmic cost. Therefore, an estimate of the metric must
be found to be used as a cost function. The boundary loss
function can be formulated as a function using a boundary
distance map associated with ground truth only, as reported
by Karimi et al. [13]. Indeed, calculation of the prediction
distance map would imply too high an algorithmic cost as it
would need to be computed for each predicted image. Let dY
be the distance map. It assigns to each image pixel a value
corresponding to the distance of that pixel from the boundary
of the ground truth mask. It is the same size as the image.
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Fig. 2. DSC (Left), HD (Middle) and ASD (Right) scores of segmentation made by network trained with Dice loss (LO), combined loss with empirical α
coefficient (LOD) and our proposed loss function (LP ). Each flier represents the score for a subject.

So, the loss function, LD (Distance loss), is asymmetric and
defined as follows :

LD(X,Y ) =
1

|Ω|
∑
p∈Ω

(X(p)− Y (p))2dY (p) (5)

The map weights are high if the squared error between
ground truth and prediction is far from the ground truth
boundary and low when the error approaches it. The loss value
depends strongly on the distance from boundary.

C. Loss functions compatibility

The combination of two loss functions raised an issue
of compatibility. Theoretically, minimizing one loss function
should minimize the second one in the same time. In practice,
the loss functions may be minimized at different speeds since
they do not have the same order of magnitude. We introduced
an α coefficient which plays two roles: (1) ensuring gradient
compatibility, (2) smoothing the transition between the training
with Dice loss only and combined loss. Usually, α coefficients
are chosen empirically. In the literature, an α starting at 0
with a 0.01 increment by epoch (until reaching 1) was used in
most cases with the Dice loss weighted by 1−α [11]. In this
study this naive method is referred as LOD. This choice was
empirical and by definition may not work in all cases. Thus,
we designed an adaptive α to solve the compatibility problem
between our two losses. It is defined as the ratio between µo

and µd averaged over the last 20 learning iterations, where µo

and µd are the gradients norms associated with LO and LD

respectively.

LP (X,Y ) = LO(X,Y ) + αLD(X,Y ) (6)

The distance loss gradient is rescaled to avoid exploding
gradient issues, leading to the combined loss LP (6). Further-
more, we noticed that training a network can take longer to
converge when using two loss functions. Thus, we have chosen
to start the training with the Dice loss to shorten the process.
Once an average training error of 0.05 (i.e. a DSC of 0.95)

is reached, the ASD reduction function is integrated to refine
the result. Although the threshold choice is arbitrary, it was
found to have little influence on the outcome.

III. EXPERIMENTS AND RESULTS

A. Datasets

Pelvis areas of 26 subjects were imaged with a 1.5T MRI
scanner (PHILIPS Gyroscan) using an ultrafast T2-weighted
pulse sequence (TR: 3.6 ms, TE: 1.8 ms, slice thickness: 10
mm, image size: 256 x 256, pixel size : 1.17 x 1.17 mm2).
For each subject, 12 images were acquired during a dynamic
acquisition of the sagittal median plane. Among subjects, 16
exhibited pathological deformities of the bladder. To show the
interest of our boundary loss function, we have chosen to focus
on the bladder which is the organ with visible contours.

B. Implementation

As a preprocessing a N4 bias field correction was applied
and images were then normalized to range between 0 and 1.
The architecture chosen for the experiment was a 4 layers
2D U-Net [1], which is classically used for medical imaging
segmentation tasks. The number of filters per layer for the
encoder was chosen as follows: 64/128/256/512, the decoder is
symmetric. Within a Pytorch framework, the chosen optimizer
was AdamW with a learning rate of 10−4. Batch normaliza-
tion and spatial dropout layers (rate 0.2) were added to the
network as well as early stopping to prevent from overfitting.
The optimization was made with mini-batches of 4 images.
Experiments were run on a Linux Xeon Silver Workstation
(4214cpu@2.2 GHz - 96Gb) with a Nvidia GeForce RTX 2080
Super GPU, training time was around 2 hours for one network.
To evaluate our method, a leave-one-out cross validation was
chosen, which means one network per subject of the study has
been trained and the whole dataset has been evaluated.

C. Results

To demonstrate the improvements made by our method,
the results of three experiments were compared: (1) training
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with LO only, (2) training with LOD using α starting at 0
and incrementing by 0.01 per epoch (3) training with our
proposed method LP . Figure 2 shows the DSC, HD and ASD
by subject. The scores were computed over the entire 12-frame
sequence of a subject, allowing us to analyze the network
ability to segment all instants of pelvic dynamics (i.e. all
possible bladder shapes) of each subject. The HD and ASD
were respectively the maximum and mean distance over the
12 images of a sequence. The best scores were achieved with
our proposed method with average DSC, HD and ASD of
0.92± 0.05, 6.5± 6.5 mm, 1.5± 1.0 mm. Average DSC, HD
and ASD for method (1) and (2) were respectively 0.91±0.06,
8.2± 8.4 mm, 2.1± 2.9 mm and 0.90± 0.05, 12.0± 9.4 mm,
2.2± 2.7 mm.

IV. DISCUSSION

The segmentation has been mostly successful with DSC
over 0.9 and ASD around 1.5 mm. With the same data set
evaluated on 5 subjects, our results were better than those
obtained with a method based on active contours in [4]
(DSC ≥ 0.9). Comparison of our results with those of the
others work cited here is not relevant because of the distinct
nature of images.

Two important pieces of information can be extracted from
the results. First, the addition of a cost function with an empir-
ical alpha coefficient does not improve the results compared
to the classical Dice loss. Indeed, the scores of DSC, HD and
ASD were worse and the variability of the scores was larger.
Second, the addition of an adaptive alpha coefficient allowed
to outperform the results obtained with the Dice loss. The HD
and ASD values of the network predictions were reduced by
21 and 28%. The dispersion of the scores was also reduced by
23% for the HD and 65% for the ASD. The impact of adding a
distance loss function helped greatly the boundaries detection,
as illustrated in Fig. 1. Our method helped improving the
segmentation quality and reduced the inter-subject variability.

Despite the progress achieved, the loss function presented
in this paper has two main limitations. First, the function is
asymmetric as only ground truth distance map was computed.
This asymmetry made the estimation less exact, and we
can suppose that a better estimation would have improved
the accuracy of the result. Second, we experimented that
having two losses raises an issue of gradient compatibility.
Considering two losses have two different gradient scales,
optimizing the first loss won’t necessarily optimize the second
one. In this study, the issue has been solved with the help of
the α coefficient, which rescales the loss gradients. However,
more studies on gradient compatibility deserves to be done
especially because hybrid losses are developing in every deep
learning tasks.

Further researches have to be done around loss function
as a function that takes into account all segmentation errors,
overlap-, boundary- and shape-based. Studies have been made
on metrics to improve the evaluation of segmentation in
the medical field. However, these metrics are not always
appropriate for deep learning, since the cost function must

be differentiable, and need to have a low computational cost
to allow an efficient training.

V. CONCLUSION

This study contribution is twofold. First, a method for
segmenting pelvic organs on 2D dynamic MRI in a robust
and automatic way has been developed. Second, a loss function
combining overlap and boundary aware errors have been intro-
duced to tackle the variety of organ deformations during strain-
ing exercise. A rescaling gradient coefficient was introduced
to ensure compatibility between loss functions. The results
have consistently shown that our contour-aware loss function
provides more robust results in comparison with the classical
Dice loss only. Accurate automatic segmentation of the main
organs paves the way towards an automatic gradation of pelvis
pathology. Efficiency of the proposed method regarding other
network architectures and other organs is a work in progress.
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