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ABSTRACT

Cardiovascular diseases are the leading cause of mortality
worldwide. Cardiac imaging is critical for precise character-
ization of cardiac structure and function, and is key in diag-
nosis, therapeutic management, and prognosis. In this work,
we propose a novel representation of spatio-temporal cardiac
data as a multiplex graph and develop a multi-level message
passing neural network to classify clinical groups correspond-
ing to different cardiovascular diseases. Using open data from
the Automated Cardiac Diagnosis Challenge (N=150), our re-
sults show that the multiplex representation extracts discrim-
inative features from the data (up to 94% accuracy compared
to up to 80% for well-tuned baselines such as XGboost and
MLP). Ablation studies show the bias induced by the graph’s
spatio-temporal structure improves generalization.

Index Terms— Message passing, Graph neural networks,
Cardiac imaging, Multiplex graphs.

1. INTRODUCTION
Cardiovascular diseases (CVDs) are the leading cause of
mortality globally, with an estimated prevalence of around
6’000/100’000 [1]. In this context, the analysis of the car-
diac function is key for patient management, diagnosis and
risk evaluation. Image-derived features are increasingly used
in clinical routine. Most features, including stroke volume
or ejection fraction (EF), are derived from automated seg-
mentations obtained from algorithms such as convolutional
neural networks (CNNs) [2]. Nevertheless, in the clinical en-
vironment there is a large data heterogeneity stemming from
hardware and sequence differences, generating images with
a variable resolution, contrast, and signal-to-noise ratio [3].
These differences impair generalization and result in variable
performance when applied to unseen data. While data pre-
processing and bias correction [4] are used to minimize these
effects, processing pipelines themselves add another source
of variability. Therefore, introducing domain knowledge as
priors in those algorithms could help to mitigate measurement
differences. Graph neural networks (GNNs) offer a possibil-
ity to include prior knowledge, e.g. by encoding the position
of anatomical structures or functional connectivity [5, 6].

Their flexibility to handle structured and non-structured data
with different relationships makes them a promising tool in
medical diagnosis [7]. GNNs exploit spatial dependencies
between entities under the main assumption that the state of
a node relates to the state of its neighbors. Most of the work
done in GNNs focused on message passing (MP) [8] and
graph convolutional networks (GCNs) [9]. These approaches
learn a latent feature representation on each node by aggre-
gating information of a node and its neighbors, and proved to
be an efficient solution for a variety of tasks including classi-
fication and regression at multiple hierarchical levels (nodes,
edge and graph) and in different settings, such as supervised,
unsupervised and semi-supervised learning [10]. Recently,
GNNs have been extended to heterogeneous graphs, with
multiple types of nodes and edges [11]. We propose to repre-
sent the heart as a multiplex graph whose nodes correspond
to cardiac regions connected among them based on their
anatomical location. Each node has a set of image-derived
features, e.g. thickness or volume. Heterogeneous edges
connect these nodes carrying information relative to the dif-
ferences between cardiac regions. Moreover, cardiac images
capture a temporal sequence that spans from end-diastole
(ED) to end-systole (ES), adding a temporal dimension to the
graph. Our goal is to use the multiplex graph representation
to derive latent representations that capture the dynamics of
the underlying system, in this case the heart contraction, and
assess the influence of the added bias by the graph structure in
the classification of clinical groups in the ACDC challenge [2]
compared to classical approaches.

2. METHODS

2.1. Data processing and feature extraction

We used open data from the ACDC challenge [2], consisting
of 150 patients divided into 5 evenly distributed subgroups: 1
normal control group (NOR) and 4 pathological groups which
encompass myocardial infarction (MINF), dilated cardiomy-
opathy (DCM), hypertrophic cardiomyopathy (HCM) and ab-
normal right ventricle (RV). The diagnostic criteria for each
disease can be found in the challenge article [2]. The dataset
was split in a balanced way in a training set of 100 sub-IC
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Fig. 1. Data processing pipeline. The input is a 4D image
composed of 2D short-axis slices. We perform slice-wise
bias-field correction and normalization, and use [12] to ob-
tain the segmentation of the whole 4D volume. Next, we align
the slices of the 4D volume to correct breath-motion artifacts
and obtain the diffeomorphism from ED to ES. The LV my-
ocardium at ED is divided in 16 AHA segments and the ED-
ES diffemorphism is used to map the AHA labels at each time
frame from ED to ES. For each segment we extract features
associated to its thickness, volume and intensity distribution.

jects and a blind test set of 50 used to evaluate algorithms in
the challenge. Each patient has a series of short-axis slices
stacked in a 4D (x-y-z-t) volume covering the base to the
apex, with a variable in-slice resolution around 1.5mm2 and
a slice thickness from 5 to 10mm. The entire dataset was ac-
quired in clinical routine, resulting in an heterogeneous image
quality. As illustrated in Figure 1, we processed the 4D im-
ages by performing slice-wise bias-field correction and nor-
malization, and defined a region of interest (ROI) covering the
whole heart. To segment the images we fine-tuned the model
presented in [12] using the ED and ES ground-truth segmenta-
tion maps available in the training set. From the segmentation
maps we computed the volumes of left ventricle (LV), right
ventricle (RV), and the LV myocardium mass, as well as the
ejection fraction (EF) for each region. We used the average
center of mass of the LV at mid-cavity slices to re-align the 2D
slices and correct the slice breath-motion misalignment. We
divided the LV myocardium at ED in 16 segments according
to the American Heart Association (AHA) model [13] and
computed the volume and thickness of each segment. The
apex region was not included given that for some subjects it is
not in the field of view of the image. The division was done at
ED since it represents the end of the filling phase, the instant
at which the ventricles are expanded and filled with blood.
From the thickness and intensity measurements of each region

we extracted the mean, median, interquartile, lower quartile
and upper quartile values. Following, we disassembled the 4D
images and registered the consecutive frames from ES to ED
using the symmetric normalization (SyN) registration algo-
rithm, available in the advanced normalization tools (ANTs)
package [14]. We obtained the diffeomorphism from ED to
ES through the composition of the consecutive frames defor-
mations. This allowed us to transfer the AHA labels to ES,
and extract the volumes and thickness measurements at each
frame up-to ES. Height and weight were used to compute
the body surface area (BSA) according to Mosteller’s formula
[15]: BSA = (Weight[kg]∗Height[cm]

3600 )
1
2 , and used it to nor-

malize the volumes of each region. Finally, we computed the
Wasserstein distance between the distribution of voxel inten-
sities of each region at each frame and between frames, as
well as the distance between the centers of mass of each re-
gion. These distances are used as edge features in our multi-
plex graph to encode relative motion. Height, weight, BSA,
and EF of the LV, RV and LV myocardium as well as stroke
volume index were used as global features independent of the
graph structure. Table 1 shows all features, their anatomical
location, and whether they are node or edge attributes.

Table 1. Edge and node features. For the voxel intensity and
thickness we extracted mean, median, lower quartile, upper
quartile and interquartile values. Center of mass (CM), my-
ocardium (Myo), left ventricle (LV), right ventricle (RV).

Feature LV RV LV Myo AHA Type
Volume ✓ ✓ ✓ ✓ Nodes
Voxel intensity ✓ ✓ ✓ ✓ Nodes
Position (CM) ✓ ✓ ✓ ✓ Nodes
Thickness ✓ ✓ Nodes
Wasserstein distance ✓ ✓ ✓ ✓ Edges
CM Distances ✓ ✓ ✓ ✓ Edges

2.2. Graph representation
We represent the heart as a spatio-temporal multiplex (mul-
tilayer) graph, with the idea to exploit the interdependence
between the different features and their spatio-temporal tra-
jectory. In this context, each image frame can be viewed as a
plane (P) in the multiplex graph. In each plane there are mul-
tiple edges (E) that connect the heart regions, mapped one-to-
one to a set of vertices (or nodes) (V). At the same time, the
planes are connected between them through multiple edges
(T ) encoding frame to frame differences in time. We for-
mally represent the multiplex graph as G = (V, E ,P, T ). We
considered as nodes the different AHA segments, as well as
the LV myocardium, LV and RV blood pool regions. Typ-
ically, the adjacency matrix is based on a defined similarity
between pairs of nodes. However, to include a spatial prior,
we decided to connect each AHA segment to his adjacent seg-
ments. In turn, all the AHA segments are connected to the LV
myocardium and to the RV and LV blood pools.
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2.3. GNN implementation

(a)

(b)

Fig. 2. a) GCN layer blocks. Planes represent cardiac frames
from the 4D image. Arrow colors indicate different edge
features, dashed arrows show inter-plane edges, solid arrows
show in-plane edges. b) End-to-end network architecture.

Our approach is mainly inspired by graph isomorphism
networks (GIN) [16] and approaches based on MP neural
networks [8]. In these approaches, the node representations
are obtained by aggregating the neighbours’ representations
and combining them with the current node representation.
Moreover, they can be extended to work with heterogeneous
GNNs, as in [11] where each node process the messages of the
different neighbors types independently and mixes them. In
our case, we have a single node type, heart regions, but multi-
ple messages. At each neural layer we have two messages that
travel simultaneously through the graph in orthogonal direc-
tions, space and time. In particular, we have a spatial message
(mp) at each plane of the graph, and an additional temporal
message (mpt) that travels alongside the directed edges con-
necting consecutive graph planes (p and t = p + 1). This
split of the MP introduces the notion of time in the network.
The input to our layer (l) is a set of node features for each
plane, hl−1

p = (h1, h2, ..., hVp
), hl−1

ip ∈ RD, where D is the
number of features and Vp the number of nodes at the plane p.
The layer produces a new set of node features per plane (D

′
),

h
′

p = (h
′

1, h
′

2, ..., h
′

Vp
), h

′

ip ∈ RD
′

. The set of edges at each
plane is denoted Ept = (e1, e2, ...eEpt), ei ∈ RFe , where Fe

is the number of edge features and Ept indicates the number
of edges in the set, the set Epp represents the in-plane edges.

At layer l, the message at node v and plane p is defined as:

ml
vp = max

u∈Np(v)

 Fe∑
f

hlup · efuvpp
cuvpp

+ml
vpt, (1)

where ml
vpt is defined as

ml
vpt = max

u∈Npt(v)

 Fe∑
f

(
hlut − hlvp

)
· efuvpt

cuvpt

 , (2)

where Np(v) denotes the neighbourhood of node v at
plane p, cuvpt represents the normalization coefficient based
on the in-node degree, and f iterates over the edge features.
The received messages are combined to update the node rep-
resentation as hlvp = ϕl

(
(1 + ϵ) · hl−1

vp +ml
vp

)
, where ϕl is

a 2-layer MLP with H-dimensional input and H-dimensional
output and ϵ is a learnable parameter. For each neural network
layer (l), a graph embedding is obtained based on the node
embeddings as gl = ψG

(
ψl

(
hl
))

, where ψl is parameterized
as a 2-layer MLP with a H-dimensional output and a H ·N -
dimensional input input, and ψG is a 2-layer MLP shared
across the neural network layers with H-dimensional input
and 5-dimensional output. The final graph embedding is ob-
tained as the addition of the average latent representations of
the total number of neural network layers (L) and the global
features embedding (hext), as Gh = 1

L

(∑L
l=1 g

l
)
+ hext;

where hext is obtained using a 2-layer MLP with Hg hidden
dimensions and 5-dimensional output. Initial node features
and global features were z-score normalised with respect to
the healthy group. The graph embedding, Gh, is used to
classify each graph into the 5 different groups using a soft-
max non-linearity to optimize a multi-class cross-entropy
loss. The GNN was implemented using deep graph library
(DGL) [17] with Pytorch [18] backend and optimized with
Adam [19].

3. EXPERIMENTS AND RESULTS
We compared our method to a fully connected MLP, gradient-
boosted decision trees (XGBoost), a random forest and a lin-
ear support vector machine (SVM). To obtain the best set
of hyperparameters for each algorithm we performed nested
cross-validation (CV) with 2 outer folds and 3 inner folds. At
each outer fold we split the training set (N=100) of the ACDC
challenge into 85:15 for training and test, and performed CV
in the training set. For our model and the MLP the hyperpa-
rameter space was explored using optuna [20]. For the other
methods, we relied on the HalvingGridSearch approach im-
plemented in scikit-learn [21]. The set of selected hyperpa-
rameters for each classifier is available at Table 3. Finally, we
split the training set in 85:15 and used the average of the two
best set of hyperparameters to train the final classifier. Addi-
tionally, we performed an ablation study to assess the influ-
ence of the edge features and the graph spatial and temporal
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connectivity. Table 2 reports the mean and standard deviation
of the accuracy obtained in CV and the results on the blind
test set (N=50).

Table 2. Cross-validation (CV) and blind test set accuracy.

Method CV Acc. (± Std) Acc. Test Edges Global Spatial Temporal
Linear SVM 0.72 ± 0.091 0.76 ✓ ✓ ✓ ✓
Random Forest 0.80 ± 0.066 0.80 ✓ ✓ ✓ ✓
XGBoost 0.82 ± 0.049 0.84 ✓ ✓ ✓ ✓
MLP 0.85 ± 0.033 0.74 ✓ ✓ ✓ ✓

Ours and ablation tests
Multiplex 0.93 ± 0.044 0.88 ✓ ✓ ✓ ✓

0.91 ± 0.022 0.86 ✓ ✓ ✓ ✗
0.90 ± 0.100 0.74 ✓ ✓ ✗ ✓
0.90 ± 0.056 0.94 ✓ ✗ ✓ ✓
0.85 ± 0.056 0.80 ✗ ✓ ✗ ✗
0.80 ± 0.067 0.66 ✗ ✗ ✗ ✗

Table 3. Hyperparameter ranges and final value. The multi-
plex GNN and the MLP hyperparameter space were explored
using Optuna, others with HalvingGridSearch.

Method Hyperparameter Range Value
Multiplex Learning rate [1e-4 1e-2] 0.0038

Batch size [20 40] 24
Num. Layers [2 6] 3
Hidden nodes [15 80] 34
Hidden global [15 50] 45
Dropout rate [0.1 0.4] 0.317
L2 weight [0 0.3] 0.09
L1 weight [0 0.3] 0.15

MLP Learning rate [1e-5 1e-2] 0.00028
Batch size [20 30] 21
Num. layers [2 10] 5
Hidden size [50 250] 190
Dropout rate [0 0.4] 0.15
L2 weight [0 0.2] 0.10
L1 weight [0 0.2] 0.19

Random Forest Estimators [501 601] 601
Criterion [Gini Entropy] Gini
Class weight [Balanced Balanced(subsample)] Balanced(subsample)

XGBoost Estimators [501 601] 601
Alpha [0 1] 0
Lambda [0 1] 0
Subsample [0 1] 0.33

Linear SVM C [1e-8 1e-3] 1e-3
Class weight [None Balanced] Balanced

4. DISCUSSION

Results presented in Table 2 indicate that our approach out-
performs classical methods used to deal with tabular data even
when using fewer features. Regarding the ablation tests, we
obtained consistently worse results when edges were set to
0. In turn, in-plane spatial connectivity seems to be more
important than inter-plane connections. Nevertheless, both
temporal and spatial connectivity are needed to achieve the
best performance. Moreover, the results suggest that edges
have a higher importance than graph external data. Overall,
these results highlight that structural information present in
the graph helps to generalize to unseen data. To the best of
our knowledge, this work is the first to represent the cardiac
cycle as a spatio-temporal multiplex graph. Previous work
[22] represented the LV myocardium as point cloud data and

used a spatio-temporal GCN [23] to predict the contour po-
sition in future frames. However, in the ST-GCN setting,
all nodes are connected and edge features are not consid-
ered. Moreover, we are using the temporal edge to compute
a delta, similar to a discrete step in an Eulerian discretiza-
tion. The use of directed edges in time encodes the sequence
temporal ordering. Therefore, we introduced a novel for-
mulation based on MP that allow us to include directional-
ity in the data and implicitly represent time. Recent works
proposed more expressive architectures than MP, mainly re-
lated to higher order GNNs that allow the identification of
graph substructures [24, 25]; we note that these approaches
can still be viewed from a MP point of view [26]. Neverthe-
less, they could be of interest for the generalization to non-
parcellated data, e.g. we could use mesh-like data without a
one-to-one node correspondence between the mesh nodes of
different subjects. Another point of interest is the generation
of the adjacency matrix. It would be interesting to explore the
simultaneous learning of the adjacency matrix during task op-
timization [27] and use the AHA connectivity pattern as prior
knowledge to regularize the structural learning. Regarding
the temporal aspect, most of the approaches are sequence-
to-sequence methods focused on forecast multivariate time-
series. These methods are usually based on recurrent neural
networks [27], 1D convolutions [28], or transformer-like ar-
chitectures [29]. Currently, we use the temporal aspect to add
a direction in our data and exploit the relative differences be-
tween the node states in time. Nevertheless, a sequence-to-
sequence approach could be implemented and use the error in
the frame prediction as an unsupervised metric to identify the
most meaningful meta-paths in the heterogeneous multiplex,
similar to the approach present in [30] to detect anomalies in
cardiac shapes from point cloud data.

5. CONCLUSIONS

To the best of our knowledge this work represents the first at-
tempt to model the cardiac dynamics from an heterogeneous
spatio-temporal graph perspective, and we showed that our
message-passing GNN is able to discriminate between differ-
ent cardiac diseases with an accuracy comparable to the top
three algorithms in the ACDC challenge which achieved an
accuracy in the blind test set of at least 0.92. In future work,
we want to assess the robustness of our approach to uncer-
tainty by applying the learned model to other datasets, such
as UK Biobank [31]. Moreover, we will explore end-to-end
learning of the graph structure [27] and the interpretability of
our results. The spatio-temporal graph-based structure opens
the door to identifying which cardiac regions are more im-
portant and when for different diseases, which would be a
valuable tool for clinical diagnosis.
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